
pyexcel
Release 0.5.15

Nov 07, 2019





Contents

1 Introduction 3

2 Support the project 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 New tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Old tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Cook book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.7 Real world cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.8 API documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.9 Developer’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.10 Change log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3 Indices and tables 109

Bibliography 111

i



ii



pyexcel, Release 0.5.15

Author C.W.

Source code http://github.com/pyexcel/pyexcel.git

Issues http://github.com/pyexcel/pyexcel/issues

License New BSD License

Released 0.5.15

Generated Nov 07, 2019

Contents 1

http://github.com/pyexcel/pyexcel.git
http://github.com/pyexcel/pyexcel/issues


pyexcel, Release 0.5.15

2 Contents



CHAPTER 1

Introduction

pyexcel provides one application programming interface to read, manipulate and write data in various excel formats.
This library makes information processing involving excel files an enjoyable task. The data in excel files can be turned
into array or dict with minimal code and vice versa. This library focuses on data processing using excel files as storage
media hence fonts, colors and charts were not and will not be considered.

The idea originated from the common usability problem: when an excel file driven web application is delivered for
non-developer users (ie: team assistant, human resource administrator etc). The fact is that not everyone knows (or
cares) about the differences between various excel formats: csv, xls, xlsx are all the same to them. Instead of training
those users about file formats, this library helps web developers to handle most of the excel file formats by providing
a common programming interface. To add a specific excel file format type to you application, all you need is to install
an extra pyexcel plugin. Hence no code changes to your application and no issues with excel file formats any more.
Looking at the community, this library and its associated ones try to become a small and easy to install alternative to
Pandas.

3



pyexcel, Release 0.5.15

4 Chapter 1. Introduction



CHAPTER 2

Support the project

If your company has embedded pyexcel and its components into a revenue generating product, please support me on
patreon or bounty source to maintain the project and develop it further.

If you are an individual, you are welcome to support me too and for however long you feel like. As my backer, you
will receive early access to pyexcel related contents.

And your issues will get prioritized if you would like to become my patreon as pyexcel pro user.

With your financial support, I will be able to invest a little bit more time in coding, documentation and writing
interesting posts.

2.1 Installation

You can install pyexcel via pip:

$ pip install pyexcel

or clone it and install it:

$ git clone https://github.com/pyexcel/pyexcel.git
$ cd pyexcel
$ python setup.py install

For individual excel file formats, please install them as you wish:

Table 1: A list of file formats supported by external plugins
Package name Supported file formats Dependencies Python versions
pyexcel-io csv, csvz [#f1]_, tsv, tsvz [#f2]_ 2.6, 2.7, 3.3, 3.4, 3.5, 3.6 pypy
pyexcel-xls xls, xlsx(read only), xlsm(read only) xlrd, xlwt same as above
pyexcel-xlsx xlsx openpyxl same as above
pyexcel-ods3 ods pyexcel-ezodf, lxml 2.6, 2.7, 3.3, 3.4 3.5, 3.6
pyexcel-ods ods odfpy same as above

5

https://www.patreon.com/bePatron?u=5537627
https://salt.bountysource.com/teams/chfw-pyexcel
https://www.patreon.com/pyexcel/posts
https://github.com/pyexcel/pyexcel-io
https://github.com/pyexcel/pyexcel-xls
https://github.com/python-excel/xlrd
https://github.com/python-excel/xlwt
https://github.com/pyexcel/pyexcel-xlsx
https://bitbucket.org/openpyxl/openpyxl
https://github.com/pyexcel/pyexcel-ods3
https://github.com/pyexcel/pyexcel-ezodf
https://github.com/pyexcel/pyexcel-ods
https://github.com/eea/odfpy


pyexcel, Release 0.5.15

Table 2: Dedicated file reader and writers
Package name Supported file formats Dependencies Python versions
pyexcel-xlsxw xlsx(write only) XlsxWriter Python 2 and 3
pyexcel-xlsxr xlsx(read only) lxml same as above
pyexcel-xlsbr xlsx(read only) pyxlsb same as above
pyexcel-odsr read only for ods, fods lxml same as above
pyexcel-odsw write only for ods loxun same as above
pyexcel-htmlr html(read only) lxml,html5lib same as above
pyexcel-pdfr pdf(read only) pdftables Python 2 only.

Table 3: Other data renderers
Package
name

Supported file formats Depen-
dencies

Python versions

pyexcel-text write only:rst, mediawiki, html, latex, grid, pipe, orgtbl, plain
simple read only: ndjson r/w: json

tabulate 2.6, 2.7, 3.3, 3.4
3.5, 3.6, pypy

pyexcel-
handsontable

handsontable in html hand-
sontable

same as above

pyexcel-
pygal

svg chart pygal 2.7, 3.3, 3.4, 3.5
3.6, pypy

pyexcel-
sortable

sortable table in html csvtotable same as above

pyexcel-gantt gantt chart in html frappe-
gantt

except pypy, same
as above

In order to manage the list of plugins installed, you need to use pip to add or remove a plugin. When you use virtualenv,
you can have different plugins per virtual environment. In the situation where you have multiple plugins that does
the same thing in your environment, you need to tell pyexcel which plugin to use per function call. For example,
pyexcel-ods and pyexcel-odsr, and you want to get_array to use pyexcel-odsr. You need to append get_array(. . . ,
library=’pyexcel-odsr’).

For compatibility tables of pyexcel-io plugins, please click here

Table 4: Plugin compatibility table
pyexcel pyexcel-io pyexcel-text pyexcel-handsontable pyexcel-pygal pyexcel-gantt
0.5.15+ 0.5.19+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.14 0.5.18 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.10+ 0.5.11+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.9.1+ 0.5.9.1+ 0.2.6+ 0.0.1 0.0.1 0.0.1
0.5.4+ 0.5.1+ 0.2.6+ 0.0.1 0.0.1 0.0.1
0.5.0+ 0.4.0+ 0.2.6+ 0.0.1 0.0.1 0.0.1
0.4.0+ 0.3.0+ 0.2.5

6 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel-xlsxw
https://github.com/jmcnamara/XlsxWriter
https://github.com/pyexcel/pyexcel-xlsxr
https://github.com/pyexcel/pyexcel-xlsbr
https://github.com/pyexcel/pyexcel-odsr
https://github.com/pyexcel/pyexcel-odsw
https://github.com/pyexcel/pyexcel-htmlr
https://github.com/pyexcel/pyexcel-pdfr
https://github.com/pyexcel/pyexcel-text
https://bitbucket.org/astanin/python-tabulate
https://github.com/pyexcel/pyexcel-handsontable
https://github.com/pyexcel/pyexcel-handsontable
https://cdnjs.com/libraries/handsontable
https://cdnjs.com/libraries/handsontable
https://github.com/pyexcel/pyexcel-chart
https://github.com/pyexcel/pyexcel-chart
https://github.com/Kozea/pygal
https://github.com/pyexcel/pyexcel-sortable
https://github.com/pyexcel/pyexcel-sortable
https://github.com/vividvilla/csvtotable
https://github.com/pyexcel/pyexcel-gantt
https://github.com/frappe/gantt
https://github.com/frappe/gantt
http://pyexcel-io.readthedocs.io/en/latest/#id5


pyexcel, Release 0.5.15

Table 5: a list of support file formats
file format definition
csv comma separated values
tsv tab separated values
csvz a zip file that contains one or many csv files
tsvz a zip file that contains one or many tsv files
xls a spreadsheet file format created by MS-Excel 97-2003 [#f1]_
xlsx MS-Excel Extensions to the Office Open XML SpreadsheetML File Format. [#f2]_
xlsm an MS-Excel Macro-Enabled Workbook file
ods open document spreadsheet
fods flat open document spreadsheet
json java script object notation
html html table of the data structure
simple simple presentation
rst rStructured Text presentation of the data
mediawiki media wiki table

2.2 Usage

Suppose you want to process the following excel data :

Here are the example usages:

>>> import pyexcel as pe
>>> records = pe.iget_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26
>>> pe.free_resources()

2.3 Design

2.3.1 Introduction

This section introduces Excel data models, its representing data structures and provides an overview of formatting,
transformation, manipulation supported by pyexcel.

Data models and data structures

When dealing with excel files, pyexcel pay attention to three primary objects: cell, sheet and book.

A book contains one or more sheets and a sheet is consisted of a sheet name and a two dimensional array of cells.
Although a sheet can contain charts and a cell can have formula, styling properties, this library ignores them and only
pays attention to the data in the cell and its data type. So, in the context of this library, the definition of those three
concepts are:

2.2. Usage 7



pyexcel, Release 0.5.15

concept definition pyexcel data model
a cell is a data unit a Python data type
a sheet is a named two dimensional array of data units Sheet
a book is a dictionary of two dimensional array of data units. Book

Data source

A data source is a storage format of structured data. The most popular data source is an excel file. Libre Of-
fice/Microsoft Excel can easily be used to generate an excel file of your desired format. Besides a physical file,
this library recognizes three additional types of source:

1. Excel files in computer memory. For example: when a file is uploaded to a Python server for information
processing. If it is relatively small, it can be stored in memory.

2. Database tables. For example: a client would like to have a snapshot of some database table in an excel file and
asks it to be sent to him.

3. Python structures. For example: a developer may have scraped a site and have stored data in Python array or
dictionary. He may want to save this information as a file.

Reading from - and writing to - a data source is modelled as parsers and renderers in pyexcel. Excel data sources and
database sources support read and write. Other data sources may only support read only, or write only methods.

Here is a list of data sources:

Data source Read and write properties
Array Read and write
Dictionary Same as above
Records Same as above
Excel files Same as above
Excel files in memory Same as above
Excel files on the web Read only
Django models Read and write
SQL models Read and write
Database querysets Read only
Textual sources Write only

Data format

This library and its plugins support most of the frequently used excel file formats.

8 Chapter 2. Support the project



pyexcel, Release 0.5.15

file format definition
csv comma separated values
tsv tab separated values
csvz a zip file that contains one or many csv files
tsvz a zip file that contains one or many tsv files
xls a spreadsheet file format created by MS-Excel 97-20031

xlsx MS-Excel Extensions to the Office Open XML SpreadsheetML File Format.2

xlsm an MS-Excel Macro-Enabled Workbook file
ods open document spreadsheet
json java script object notation
html html table of the data structure
simple simple presentation
rst rStructured Text presentation of the data
mediawiki media wiki table

See also A list of file formats supported by external plugins.

Data transformation

Often a developer would like to have excel data imported into a Python data structure. This library supports the
conversions from previous three data source to the following list of data structures, and vice versa.

Table 6: A list of supported data structures
Pesudo name Python name Related model
two dimensional array a list of lists pyexcel.Sheet
a dictionary of key value pair a dictionary pyexcel.Sheet
a dictionary of one dimensional arrays a dictionary of lists pyexcel.Sheet
a list of dictionaries a list of dictionaries pyexcel.Sheet
a dictionary of two dimensional arrays a dictionary of lists of lists pyexcel.Book

Data manipulation

The main operation on a cell involves cell access, formatting and cleansing. The main operation on a sheet involves
group access to a row or a column; data filtering; and data transformation. The main operation in a book is obtain
access to individual sheets.

Data transcoding

For various reasons the data in one format needs to be transcoded into another. This library provides a transcoding
tunnel for data transcoding between supported file formats.

Data visualization

Via pyexel.renderer.AbstractRenderer interface, data visualization is made possible. pyexcel-chart is
the interface plugin to formalize this effort. pyexcel-pygal is the first plugin to provide bar, pie, histogram charts and
more.

1 quoted from whatis.com. Technical details can be found at MSDN XLS
2 xlsx is used by MS-Excel 2007, more information can be found at MSDN XLSX

2.3. Design 9

http://whatis.techtarget.com/fileformat/XLS-Worksheet-file-Microsoft-Excel
https://msdn.microsoft.com/en-us/library/office/gg615597(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/dd922181(v=office.12).aspx


pyexcel, Release 0.5.15

Examples of supported data structure

Here is a list of examples:

>>> import pyexcel as p
>>> two_dimensional_list = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
>>> p.get_sheet(array=two_dimensional_list)
pyexcel_sheet1:
+---+----+----+----+
| 1 | 2 | 3 | 4 |
+---+----+----+----+
| 5 | 6 | 7 | 8 |
+---+----+----+----+
| 9 | 10 | 11 | 12 |
+---+----+----+----+
>>> a_dictionary_of_key_value_pair = {
... "IE": 0.2,
... "Firefox": 0.3
... }
>>> p.get_sheet(adict=a_dictionary_of_key_value_pair)
pyexcel_sheet1:
+---------+-----+
| Firefox | IE |
+---------+-----+
| 0.3 | 0.2 |
+---------+-----+
>>> a_dictionary_of_one_dimensional_arrays = {
... "Column 1": [1, 2, 3, 4],
... "Column 2": [5, 6, 7, 8],
... "Column 3": [9, 10, 11, 12],
... }
>>> p.get_sheet(adict=a_dictionary_of_one_dimensional_arrays)
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 5 | 9 |
+----------+----------+----------+
| 2 | 6 | 10 |
+----------+----------+----------+
| 3 | 7 | 11 |
+----------+----------+----------+
| 4 | 8 | 12 |
+----------+----------+----------+
>>> a_list_of_dictionaries = [
... {
... "Name": 'Adam',
... "Age": 28
... },
... {
... "Name": 'Beatrice',
... "Age": 29
... },
... {

(continues on next page)

10 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

... "Name": 'Ceri',

... "Age": 30

... },

... {

... "Name": 'Dean',

... "Age": 26

... }

... ]
>>> p.get_sheet(records=a_list_of_dictionaries)
pyexcel_sheet1:
+-----+----------+
| Age | Name |
+-----+----------+
| 28 | Adam |
+-----+----------+
| 29 | Beatrice |
+-----+----------+
| 30 | Ceri |
+-----+----------+
| 26 | Dean |
+-----+----------+
>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }
>>> p.get_book(bookdict=a_dictionary_of_two_dimensional_arrays)
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |

(continues on next page)

2.3. Design 11



pyexcel, Release 0.5.15

(continued from previous page)

+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

2.3.2 Signature functions

Import data into Python

This library provides one application programming interface to read data from one of the following data sources:

• physical file

• memory file

• SQLAlchemy table

• Django Model

• Python data structures: dictionary, records and array

and to transform them into one of the following data structures:

• two dimensional array

• a dictionary of one dimensional arrays

• a list of dictionaries

• a dictionary of two dimensional arrays

• a Sheet

• a Book

Four data access functions

Python data can be handled well using lists, dictionaries and various mixture of both. This library provides four
module level functions to help you obtain excel data in these data structures. Please refer to “A list of module level
functions”, the first three functions operates on any one sheet from an excel book and the fourth one returns all data in
all sheets in an excel book.

Table 7: A list of module level functions
Functions Name Python name
get_array() two dimensional array a list of lists
get_dict() a dictionary of one dimensional arrays an ordered dictionary of lists
get_records() a list of dictionaries a list of dictionaries
get_book_dict() a dictionary of two dimensional arrays a dictionary of lists of lists

See also:

• get_an_array_from_an_excel_sheet

12 Chapter 2. Support the project



pyexcel, Release 0.5.15

• How to get a dictionary from an excel sheet

• How to obtain records from an excel sheet

• How to obtain a dictionary from a multiple sheet book

The following two variants of the data access function use generator and should work well with big data files

Table 8: A list of variant functions
Functions Name Python name
iget_array()

a memory efficient two dimensional
array

a generator of a list of lists

iget_records() a memory efficient list list of dictio-
naries

a generator of a list of dictionaries

However, you will need to call free_resource() to make sure file handles are closed.

Two pyexcel functions

In cases where the excel data needs custom manipulations, a pyexcel user got a few choices: one is to use Sheet and
Book, the other is to look for more sophisticated ones:

• Pandas, for numerical analysis

• Do-it-yourself

Functions Returns
get_sheet() Sheet
get_book() Book

For all six functions, you can pass on the same command parameters while the return value is what the function says.

Export data from Python

This library provides one application programming interface to transform them into one of the data structures:

• two dimensional array

• a (ordered) dictionary of one dimensional arrays

• a list of dictionaries

• a dictionary of two dimensional arrays

• a Sheet

• a Book

and write to one of the following data sources:

• physical file

• memory file

• SQLAlchemy table

• Django Model

2.3. Design 13



pyexcel, Release 0.5.15

• Python data structures: dictionary, records and array

Here are the two functions:

Functions Description
save_as() Works well with single sheet file
isave_as() Works well with big data files
save_book_as()

Works with multiple sheet file and big data files

isave_book_as()
Works with multiple sheet file and big data files

If you would only use these two functions to do format transcoding, you may enjoy a speed boost using isave_as()
and isave_book_as(), because they use yield keyword and minimize memory footprint. However, you will need
to call free_resource() to make sure file handles are closed. And save_as() and save_book_as() reads
all data into memory and will make all rows the same width.

See also:

• How to save an python array as an excel file

• How to save a dictionary of two dimensional array as an excel file

• How to save an python array as a csv file with special delimiter

Data transportation/transcoding

This library is capable of transporting your data between any of the following data sources:

• physical file

• memory file

• SQLAlchemy table

• Django Model

• Python data structures: dictionary, records and array

See also:

• How to import an excel sheet to a database using SQLAlchemy

• How to open an xls file and save it as xlsx

• How to open an xls file and save it as csv

2.3.3 Architecture

pyexcel uses loosely couple plugins to fullfil the promise to access various file formats. lml is the plugin management
library that provide the specialized support for the loose coupling.

What is loose coupling?

The components of pyexcel is designed as building blocks. For your project, you can cherry-pick the file format
support without affecting the core functionality of pyexcel. Each plugin will bring in additional dependences. For
example, if you choose pyexcel-xls, xlrd and xlwt will be brought in as 2nd level depndencies.

14 Chapter 2. Support the project



pyexcel, Release 0.5.15

Looking at the following architectural diagram, pyexcel hosts plugin interfaces for data source, data renderer and data
parser. pyexcel-pygal, pyexcel-matplotlib, and pyexcel-handsontable extend pyexcel using data renderer interface.
pyexcel-io package takes away the responsibilities to interface with excel libraries, for example: xlrd, openpyxl,
ezodf.

As in A list of file formats supported by external plugins, there are overlapping capabilities in reading and writing xlsx,
ods files. Because each third parties express different personalities although they may read and write data in the same
file format, you as the pyexcel is left to pick which suit your task best.

Dotted arrow means the package or module is loaded later.

2.4 New tutorial

2.4.1 One liners

This section shows you how to get data from your excel files and how to export data to excel files in one line

One liner to get data from the excel files

Get a list of dictionaries

Suppose you want to process the following coffee data (data source coffee chart on the center for science in
the public interest):

Let’s get a list of dictionary out from the xls file:

>>> records = p.get_records(file_name="your_file.xls")

And let’s check what do we have:

>>> for record in records:
... print("%s of %s has %s mg" % (
... record['Serving Size'],
... record['Coffees'],
... record['Caffeine (mg)']))
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Get two dimensional array

Instead, what if you have to use pyexcel.get_array() to do the same:

>>> for row in p.get_array(file_name="your_file.xls", start_row=1):
... print("%s of %s has %s mg" % (
... row[1],
... row[0],
... row[2]))
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg

(continues on next page)

2.4. New tutorial 15

https://cspinet.org/eating-healthy/ingredients-of-concern/caffeine-chart


pyexcel, Release 0.5.15

(continued from previous page)

grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

where start_row skips the header row.

Get a dictionary

You can get a dictionary too:

Now let’s get a dictionary out from the spreadsheet:

>>> my_dict = p.get_dict(file_name="your_file.xls", name_columns_by_row=0)

And check what do we have:

>>> from pyexcel._compact import OrderedDict
>>> isinstance(my_dict, OrderedDict)
True
>>> for key, values in my_dict.items():
... print(key + " : " + ','.join([str(item) for item in values]))
Coffees : Starbucks Coffee Blonde Roast,Dunkin' Donuts Coffee with Turbo Shot,
→˓Starbucks Coffee Pike Place Roast,Panera Coffee Light Roast
Serving Size : venti(20 oz),large(20 oz.),grande(16 oz.),regular(16 oz.)
Caffeine (mg) : 475,398,310,300

Please note that my_dict is an OrderedDict.

Get a dictionary of two dimensional array

Suppose you have a multiple sheet book as the following:

Here is the code to obtain those sheets as a single dictionary:

>>> book_dict = p.get_book_dict(file_name="book.xls")

And check::

>>> isinstance(book_dict, OrderedDict)
True
>>> import json
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Data export in one line

Export an array

Suppose you have the following array:

16 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> p.save_as(array=data, dest_file_name="example.xls")

Let’s verify it:

>>> p.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

And here is the code to save it as a csv file

>>> p.save_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

Let’s verify it:

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

Export a list of dictionaries

>>> records = [
... {"year": 1903, "country": "Germany", "speed": "206.7km/h"},
... {"year": 1964, "country": "Japan", "speed": "210km/h"},
... {"year": 2008, "country": "China", "speed": "350km/h"}
... ]
>>> p.save_as(records=records, dest_file_name='high_speed_rail.xls')

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
... "area": "5.58 square meters",
... "population": "11,619",
... "civial parish": "Henley-on-Thames",
... "latitude": "51.536",
... "longitude": "-0.898"
... }
>>> p.save_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

2.4. New tutorial 17



pyexcel, Release 0.5.15

Export a dictionary of single dimensonal array

>>> ccs_insights = {
... "year": ["2017", "2018", "2019", "2020", "2021"],
... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]
... }
>>> p.save_as(adict=ccs_insights, dest_file_name='ccs.csv')

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }

Here is the code:

>>> p.save_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
... )

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> p.save_book_as(bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> book_dict = p.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))

(continues on next page)

18 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

File format transcoding on one line

Note: Please note that the following file transcoding could be with zero line. Please install pyexcel-cli and you will
do the transcode in one command. No need to open your editor, save the problem, then python run.

The following code does a simple file format transcoding from xls to csv:

>>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

Note: Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls
file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

Let use previous example and save it as xlsx instead

>>> p.save_as(file_name="birth.xls",
... dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

2.4. New tutorial 19



pyexcel, Release 0.5.15

Excel book merge and split operation in one line

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say “output.xls”:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_csv_directory\*.csv"), "output.xls")

You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls,
xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_excel_file_directory\*.*"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You
can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob("*_output.xls")
>>> for file in sorted(outputfiles):
... print(file)
...
Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

for the output file, you can specify any of the supported formats

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate
it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls")
>>> if os.path.exists("Sheet 1_output.xls"):
... print("Sheet 1_output.xls exists")
...
Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

20 Chapter 2. Support the project



pyexcel, Release 0.5.15

2.4.2 Stream APIs for big file : A set of two liners

This section shows you how to get data from your BIG excel files and how to export data to excel files in two lines at
most.

Two liners for get data from big excel files

Get a list of dictionaries

Suppose you want to process the following coffee data:

Let’s get a list of dictionary out from the xls file:

>>> records = p.iget_records(file_name="your_file.xls")

And let’s check what do we have:

>>> for record in records:
... print("%s of %s has %s mg" % (
... record['Serving Size'],
... record['Coffees'],
... record['Caffeine (mg)']))
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Please do not forgot the second line:

>>> p.free_resources()

Get two dimensional array

Instead, what if you have to use pyexcel.get_array() to do the same:

>>> for row in p.iget_array(file_name="your_file.xls", start_row=1):
... print("%s of %s has %s mg" % (
... row[1],
... row[0],
... row[2]))
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Again, do not forgot the second line:

>>> p.free_resources()

where start_row skips the header row.

Data export in one liners

2.4. New tutorial 21



pyexcel, Release 0.5.15

Export an array

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> p.isave_as(array=data, dest_file_name="example.xls")

But the following line is not required because the data source are not file sources:

>>> # p.free_resources()

Let’s verify it:

>>> p.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

And here is the code to save it as a csv file

>>> p.isave_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

Let’s verify it:

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

Export a list of dictionaries

>>> records = [
... {"year": 1903, "country": "Germany", "speed": "206.7km/h"},
... {"year": 1964, "country": "Japan", "speed": "210km/h"},
... {"year": 2008, "country": "China", "speed": "350km/h"}
... ]
>>> p.isave_as(records=records, dest_file_name='high_speed_rail.xls')

22 Chapter 2. Support the project



pyexcel, Release 0.5.15

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
... "area": "5.58 square meters",
... "population": "11,619",
... "civial parish": "Henley-on-Thames",
... "latitude": "51.536",
... "longitude": "-0.898"
... }
>>> p.isave_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

Export a dictionary of single dimensonal array

>>> ccs_insights = {
... "year": ["2017", "2018", "2019", "2020", "2021"],
... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]
... }
>>> p.isave_as(adict=ccs_insights, dest_file_name='ccs.csv')
>>> p.free_resources()

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }

Here is the code:

>>> p.isave_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
... )

2.4. New tutorial 23



pyexcel, Release 0.5.15

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> from pyexcel._compact import OrderedDict
>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> p.isave_book_as(bookdict=data, dest_file_name="book.xls")
>>> p.free_resources()

Let’s verify its order:

>>> import json
>>> book_dict = p.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

File format transcoding on one line

Note: Please note that the following file transcoding could be with zero line. Please install pyexcel-cli and you will
do the transcode in one command. No need to open your editor, save the problem, then python run.

The following code does a simple file format transcoding from xls to csv:

>>> import pyexcel
>>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

Note: Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls
file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

Let use previous example and save it as xlsx instead

24 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> import pyexcel
>>> p.isave_as(file_name="birth.xls",
... dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

2.4.3 For web developer

The following libraries are written to facilitate the daily import and export of excel data.

framework plugin/middleware/extension
Flask Flask-Excel
Django django-excel
Pyramid pyramid-excel

And you may make your own by using pyexcel-webio

Read any supported excel and respond its content in json

You can find a real world example in examples/memoryfile/ directory: pyexcel_server.py. Here is the example snippet

1 def upload():
2 if request.method == 'POST' and 'excel' in request.files:
3 # handle file upload
4 filename = request.files['excel'].filename
5 extension = filename.split(".")[-1]
6 # Obtain the file extension and content
7 # pass a tuple instead of a file name
8 content = request.files['excel'].read()
9 if sys.version_info[0] > 2:

10 # in order to support python 3
11 # have to decode bytes to str
12 content = content.decode('utf-8')
13 sheet = pe.get_sheet(file_type=extension, file_content=content)
14 # then use it as usual
15 sheet.name_columns_by_row(0)
16 # respond with a json
17 return jsonify({"result": sheet.dict})
18 return render_template('upload.html')

request.files[‘excel’] in line 4 holds the file object. line 5 finds out the file extension. line 13 obtains a sheet instance.
line 15 uses the first row as data header. line 17 sends the json representation of the excel file back to client browser.

2.4. New tutorial 25

https://github.com/pyexcel-webwares/Flask-Excel
https://github.com/pyexcel-webwares/django-excel
https://github.com/pyexcel-webwares/pyramid-excel
https://github.com/pyexcel-webwares/pyexcel-webio


pyexcel, Release 0.5.15

Write to memory and respond to download

1 data = [
2 [...],
3 ...
4 ]
5

6 @app.route('/download')
7 def download():
8 sheet = pe.Sheet(data)
9 output = make_response(sheet.csv)

10 output.headers["Content-Disposition"] = "attachment; filename=export.csv"
11 output.headers["Content-type"] = "text/csv"
12 return output

make_response is a Flask utility to make a memory content as http response.

Note: You can find the corresponding source code at examples/memoryfile

2.4.4 Pyexcel data renderers

There exist a few data renderers for pyexcel data. This chapter will walk you through them.

View pyexcel data in ndjson and other formats

With pyexcel-text, you can get pyexcel data in newline delimited json, normal json and other formats.

View the pyexcel data in a browser

You can use pyexcel-handsontable to render your data.

Include excel data in your python documentation

sphinxcontrib-excel help you present your excel data in various formats inside your sphinx documentation.

Draw charts from your excel data

pyexcel-pygal helps you with all charting options and give you charts in svg format.

pyexcel-echarts draws 2D, 3D, geo charts from pyexcel data and has awesome animations too, but it is under develop-
ment.

pyexcel-matplotlib helps you with scentific charts and is under developmement.

Gantt chart visualization for your excel data

‘pyexcel-gantt‘_ is a specialist renderer for gantt chart.

26 Chapter 2. Support the project

https://github.com/chfw/pyexcel/tree/master/examples/memoryfile
https://github.com/pyexcel-renderers/pyexcel-text
https://github.com/pyexcel-renderers/pyexcel-handsontable
https://github.com/pyexcel-renderers/sphinxcontrib-excel
https://github.com/pyexcel-renderers/pyexcel-pygal
https://github.com/pyexcel-renderers/pyexcel-echarts
https://github.com/pyexcel-renderers/pyexcel-matplotlib


pyexcel, Release 0.5.15

2.4.5 Sheet

Random access

To randomly access a cell of Sheet instance, two syntax are available:

sheet[row, column]

or:

sheet['A1']

The former syntax is handy when you know the row and column numbers. The latter syntax is introduced to help you
convert the excel column header such as “AX” to integer numbers.

Suppose you have the following data, you can get value 5 by reader[2, 2].

Here is the example code showing how you can randomly access a cell:

>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> sheet.content
+---------+---+---+---+
| Example | X | Y | Z |
+---------+---+---+---+
| a | 1 | 2 | 3 |
+---------+---+---+---+
| b | 4 | 5 | 6 |
+---------+---+---+---+
| c | 7 | 8 | 9 |
+---------+---+---+---+
>>> print(sheet[2, 2])
5
>>> print(sheet["C3"])
5
>>> sheet[3, 3] = 10
>>> print(sheet[3, 3])
10

Note: In order to set a value to a cell, please use sheet[row_index, column_index] = new_value

Random access to rows and columns

Continue with previous excel file, you can access row and column separately:

>>> sheet.row[1]
['a', 1, 2, 3]
>>> sheet.column[2]
['Y', 2, 5, 8]

Use custom names instead of index Alternatively, it is possible to use the first row to refer to each columns:

>>> sheet.name_columns_by_row(0)
>>> print(sheet[1, "Y"])
5
>>> sheet[1, "Y"] = 100
>>> print(sheet[1, "Y"])
100

2.4. New tutorial 27



pyexcel, Release 0.5.15

You have noticed the row index has been changed. It is because first row is taken as the column names, hence all rows
after the first row are shifted. Now accessing the columns are changed too:

>>> sheet.column['Y']
[2, 100, 8]

Hence access the same cell, this statement also works:

>>> sheet.column['Y'][1]
100

Further more, it is possible to use first column to refer to each rows:

>>> sheet.name_rows_by_column(0)

To access the same cell, we can use this line:

>>> sheet.row["b"][1]
100

For the same reason, the row index has been reduced by 1. Since we have named columns and rows, it is possible to
access the same cell like this:

>>> print(sheet["b", "Y"])
100
>>> sheet["b", "Y"] = 200
>>> print(sheet["b", "Y"])
200

Play with data

Suppose you have the following data in any of the supported excel formats again:

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls",
... name_columns_by_row=0)

You can get headers:

>>> print(list(sheet.colnames))
['Column 1', 'Column 2', 'Column 3']

You can use a utility function to get all in a dictionary:

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6,
→˓9])])

Maybe you want to get only the data without the column headers. You can call rows() instead:

>>> list(sheet.rows())
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

You can get data from the bottom to the top one by calling rrows():

>>> list(sheet.rrows())
[[7, 8, 9], [4, 5, 6], [1, 2, 3]]

You might want the data arranged vertically. You can call columns():

28 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> list(sheet.columns())
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

You can get columns in reverse sequence as well by calling rcolumns():

>>> list(sheet.rcolumns())
[[3, 6, 9], [2, 5, 8], [1, 4, 7]]

Do you want to flatten the data? You can get the content in one dimensional array. If you are interested in playing with
one dimensional enumeration, you can check out these functions enumerate(), reverse(), vertical(), and
rvertical():

>>> list(sheet.enumerate())
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(sheet.reverse())
[9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(sheet.vertical())
[1, 4, 7, 2, 5, 8, 3, 6, 9]
>>> list(sheet.rvertical())
[9, 6, 3, 8, 5, 2, 7, 4, 1]

attributes

Attributes:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.tsv
'1\t2\t3\r\n3\t4\t5\r\n'
>>> print(sheet.simple)
csv:
- - -
1 2 3
3 4 5
- - -

What’s more, you could as well set value to an attribute, for example::

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

You can get the direct access to underneath stream object. In some situation, it is desired:

>>> stream = sheet.stream.tsv

The returned stream object has tsv formatted content for reading.

What you could further do is to set a memory stream of any supported file format to a sheet. For example:

>>> another_sheet = pyexcel.Sheet()
>>> another_sheet.xls = sheet.xls
>>> another_sheet.content
+---+---+---+

(continues on next page)

2.4. New tutorial 29



pyexcel, Release 0.5.15

(continued from previous page)

| 1 | 2 | 3 |
+---+---+---+
| 3 | 4 | 5 |
+---+---+---+

Yet, it is possible assign a absolute url to an online excel file to an instance of pyexcel.Sheet.

custom attributes

You can pass on source specific parameters to getter and setter functions.

>>> content = "1-2-3\n3-4-5"
>>> sheet = pyexcel.Sheet()
>>> sheet.set_csv(content, delimiter="-")
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'
>>> sheet.get_csv(delimiter="|")
'1|2|3\r\n3|4|5\r\n'

Data manipulation

The data in a sheet is represented by Sheet which maintains the data as a list of lists. You can regard Sheet as a
two dimensional array with additional iterators. Random access to individual column and row is exposed by Column
and Row

Column manipulation

Suppose have one data file as the following:

>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+

And you want to update Column 2 with these data: [11, 12, 13]

>>> sheet.column["Column 2"] = [11, 12, 13]
>>> sheet.column[1]
[11, 12, 13]
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 11 | 7 |
+----------+----------+----------+

(continues on next page)

30 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

| 2 | 12 | 8 |
+----------+----------+----------+
| 3 | 13 | 9 |
+----------+----------+----------+

Remove one column of a data file

If you want to remove Column 2, you can just call:

>>> del sheet.column["Column 2"]
>>> sheet.column["Column 3"]
[7, 8, 9]

The sheet content will become:

>>> sheet
pyexcel sheet:
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 1 | 7 |
+----------+----------+
| 2 | 8 |
+----------+----------+
| 3 | 9 |
+----------+----------+

Append more columns to a data file

Continue from previous example. Suppose you want add two more columns to the data file

Column 4 Column 5
10 13
11 14
12 15

Here is the example code to append two extra columns:

>>> extra_data = [
... ["Column 4", "Column 5"],
... [10, 13],
... [11, 14],
... [12, 15]
... ]
>>> sheet2 = pyexcel.Sheet(extra_data)
>>> sheet.column += sheet2
>>> sheet.column["Column 4"]
[10, 11, 12]
>>> sheet.column["Column 5"]
[13, 14, 15]

Here is what you will get:

2.4. New tutorial 31



pyexcel, Release 0.5.15

>>> sheet
pyexcel sheet:
+----------+----------+----------+----------+
| Column 1 | Column 3 | Column 4 | Column 5 |
+==========+==========+==========+==========+
| 1 | 7 | 10 | 13 |
+----------+----------+----------+----------+
| 2 | 8 | 11 | 14 |
+----------+----------+----------+----------+
| 3 | 9 | 12 | 15 |
+----------+----------+----------+----------+

Cherry pick some columns to be removed

Suppose you have the following data:

>>> data = [
... ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'],
... [1,2,3,4,5,6,7,9],
... ]
>>> sheet = pyexcel.Sheet(data, name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+---+---+---+---+---+---+---+---+
| a | b | c | d | e | f | g | h |
+===+===+===+===+===+===+===+===+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
+---+---+---+---+---+---+---+---+

And you want to remove columns named as: ‘a’, ‘c, ‘e’, ‘h’. This is how you do it:

>>> del sheet.column['a', 'c', 'e', 'h']
>>> sheet
pyexcel sheet:
+---+---+---+---+
| b | d | f | g |
+===+===+===+===+
| 2 | 4 | 6 | 7 |
+---+---+---+---+

What if the headers are in a different row

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| 1 | 2 | 3 |
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

32 Chapter 2. Support the project



pyexcel, Release 0.5.15

The way to name your columns is to use index 1:

>>> sheet.name_columns_by_row(1)

Here is what you get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

Row manipulation

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+---+---+---+-------+
| a | b | c | Row 1 |
+---+---+---+-------+
| e | f | g | Row 2 |
+---+---+---+-------+
| 1 | 2 | 3 | Row 3 |
+---+---+---+-------+

You can name your rows by column index at 3:

>>> sheet.name_rows_by_column(3)
>>> sheet
pyexcel sheet:
+-------+---+---+---+
| Row 1 | a | b | c |
+-------+---+---+---+
| Row 2 | e | f | g |
+-------+---+---+---+
| Row 3 | 1 | 2 | 3 |
+-------+---+---+---+

Then you can access rows by its name:

>>> sheet.row["Row 1"]
['a', 'b', 'c']

Formatting

Previous section has assumed the data is in the format that you want. In reality, you have to manipulate the data types
a bit to suit your needs. Hence, formatters comes into the scene. use format() to apply formatter immediately.

Note: int, float and datetime values are automatically detected in csv files since pyexcel version 0.2.2

2.4. New tutorial 33



pyexcel, Release 0.5.15

Convert a column of numbers to strings

Suppose you have the following data:

>>> import pyexcel
>>> data = [
... ["userid","name"],
... [10120,"Adam"],
... [10121,"Bella"],
... [10122,"Cedar"]
... ]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.name_columns_by_row(0)
>>> sheet.column["userid"]
[10120, 10121, 10122]

As you can see, userid column is of int type. Next, let’s convert the column to string format:

>>> sheet.column.format("userid", str)
>>> sheet.column["userid"]
['10120', '10121', '10122']

Cleanse the cells in a spread sheet

Sometimes, the data in a spreadsheet may have unwanted strings in all or some cells. Let’s take an example. Suppose
we have a spread sheet that contains all strings but it as random spaces before and after the text values. Some field had
weird characters, such as “&nbsp;&nbsp;”:

>>> data = [
... [" Version", " Comments", " Author &nbsp;"],
... [" v0.0.1 ", " Release versions"," &nbsp;Eda"],
... ["&nbsp; v0.0.2 ", "Useful updates &nbsp; &nbsp;", " &nbsp;Freud"]
... ]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.content
+-----------------+------------------------------+----------------------+
| Version | Comments | Author &nbsp; |
+-----------------+------------------------------+----------------------+
| v0.0.1 | Release versions | &nbsp;Eda |
+-----------------+------------------------------+----------------------+
| &nbsp; v0.0.2 | Useful updates &nbsp; &nbsp; | &nbsp;Freud |
+-----------------+------------------------------+----------------------+

Now try to create a custom cleanse function:

.. code-block:: python

>>> def cleanse_func(v):
... v = v.replace("&nbsp;", "")
... v = v.rstrip().strip()
... return v
...

Then let’s create a SheetFormatter and apply it:

34 Chapter 2. Support the project



pyexcel, Release 0.5.15

.. code-block:: python

>>> sheet.map(cleanse_func)

So in the end, you get this:

>>> sheet.content
+---------+------------------+--------+
| Version | Comments | Author |
+---------+------------------+--------+
| v0.0.1 | Release versions | Eda |
+---------+------------------+--------+
| v0.0.2 | Useful updates | Freud |
+---------+------------------+--------+

Data filtering

use filter() function to apply a filter immediately. The content is modified.

Suppose you have the following data in any of the supported excel formats:

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

>>> import pyexcel

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+
| 7 | 8 | 9 |
+----------+----------+----------+

Filter out some data

You may want to filter odd rows and print them in an array of dictionaries:

>>> sheet.filter(row_indices=[0, 2])
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 4 | 5 | 6 |
+----------+----------+----------+

Let’s try to further filter out even columns:

2.4. New tutorial 35



pyexcel, Release 0.5.15

>>> sheet.filter(column_indices=[1])
>>> sheet.content
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 4 | 6 |
+----------+----------+

Save the data

Let’s save the previous filtered data:

>>> sheet.save_as("example_series_filter.xls")

When you open example_series_filter.xls, you will find these data

Column 1 Column 3
2 8

How to filter out empty rows in my sheet?

Suppose you have the following data in a sheet and you want to remove those rows with blanks:

>>> import pyexcel as pe
>>> sheet = pe.Sheet([[1,2,3],['','',''],['','',''],[1,2,3]])

You can use pyexcel.filters.RowValueFilter, which examines each row, return True if the row should be
filtered out. So, let’s define a filter function:

>>> def filter_row(row_index, row):
... result = [element for element in row if element != '']
... return len(result)==0

And then apply the filter on the sheet:

>>> del sheet.row[filter_row]
>>> sheet
pyexcel sheet:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

2.4.6 Book

You access each cell via this syntax:

book[sheet_index][row, column]

or:

36 Chapter 2. Support the project



pyexcel, Release 0.5.15

book["sheet_name"][row, column]

Suppose you have the following sheets:

And you can randomly access a cell in a sheet:

>>> book = pyexcel.get_book(file_name="example.xls")
>>> print(book["Sheet 1"][0,0])
1
>>> print(book[0][0,0]) # the same cell
1

Tip: With pyexcel, you can regard single sheet reader as an two dimensional array and multi-sheet excel book reader
as a ordered dictionary of two dimensional arrays.

Write multiple sheet excel file

Suppose you have previous data as a dictionary and you want to save it as multiple sheet excel file:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }
>>> book = pyexcel.get_book(bookdict=content)
>>> book.save_as("output.xls")

You shall get a xls file

Read multiple sheet excel file

Let’s read the previous file back:

>>> book = pyexcel.get_book(file_name="output.xls")
>>> sheets = book.to_dict()
>>> for name in sheets.keys():
... print(name)
Sheet 1
Sheet 2
Sheet 3

2.4. New tutorial 37



pyexcel, Release 0.5.15

Get content

>>> book_dict = {
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ],
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ]
... }
>>> book = pyexcel.get_book(bookdict=book_dict)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+
>>> print(book.rst)
Sheet 1:
= = =
1 2 3
4 5 6
7 8 9
= = =
Sheet 2:
=== === ===

(continues on next page)

38 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
=== === ===
Sheet 3:
=== === ===
O P Q
3.0 2.0 1.0
4.0 3.0 2.0
=== === ===

You can get the direct access to underneath stream object. In some situation, it is desired.

>>> stream = book.stream.plain

The returned stream object has the content formatted in plain format for further reading.

Set content

Surely, you could set content to an instance of pyexcel.Book.

>>> other_book = pyexcel.Book()
>>> other_book.bookdict = book_dict
>>> print(other_book.plain)
Sheet 1:
1 2 3
4 5 6
7 8 9
Sheet 2:
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
Sheet 3:
O P Q
3.0 2.0 1.0
4.0 3.0 2.0

You can set via ‘xls’ attribute too.

>>> another_book = pyexcel.Book()
>>> another_book.xls = other_book.xls
>>> print(another_book.mediawiki)
Sheet 1:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| align="right"| 1 || align="right"| 2 || align="right"| 3
|-
| align="right"| 4 || align="right"| 5 || align="right"| 6
|-
| align="right"| 7 || align="right"| 8 || align="right"| 9
|}
Sheet 2:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->

(continues on next page)

2.4. New tutorial 39



pyexcel, Release 0.5.15

(continued from previous page)

|-
| X || Y || Z
|-
| 1 || 2 || 3
|-
| 4 || 5 || 6
|}
Sheet 3:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| O || P || Q
|-
| 3 || 2 || 1
|-
| 4 || 3 || 2
|}

Access to individual sheets

You can access individual sheet of a book via attribute:

>>> book = pyexcel.get_book(file_name="book.xls")
>>> book.sheet3
sheet3:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

or via array notations:

>>> book["sheet 1"] # there is a space in the sheet name
sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+

Merge excel books

Suppose you have two excel books and each had three sheets. You can merge them and get a new book:

You also can merge individual sheets:

>>> book1 = pyexcel.get_book(file_name="book1.xls")
>>> book2 = pyexcel.get_book(file_name="book2.xlsx")

(continues on next page)

40 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

>>> merged_book = book1 + book2
>>> merged_book = book1["Sheet 1"] + book2["Sheet 2"]
>>> merged_book = book1["Sheet 1"] + book2
>>> merged_book = book1 + book2["Sheet 2"]

Manipulate individual sheets

merge sheets into a single sheet

Suppose you want to merge many csv files row by row into a new sheet.

>>> import glob
>>> merged = pyexcel.Sheet()
>>> for file in glob.glob("*.csv"):
... merged.row += pyexcel.get_sheet(file_name=file)
>>> merged.save_as("merged.csv")

How do I read a book, process it and save to a new book

Yes, you can do that. The code looks like this:

import pyexcel

book = pyexcel.get_book(file_name="yourfile.xls")
for sheet in book:

# do you processing with sheet
# do filtering?
pass

book.save_as("output.xls")

What would happen if I save a multi sheet book into “csv” file

Well, you will get one csv file per each sheet. Suppose you have these code:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],

(continues on next page)

2.4. New tutorial 41



pyexcel, Release 0.5.15

(continued from previous page)

... [4.0, 3.0, 2.0]

... ]

... }
>>> book = pyexcel.Book(content)
>>> book.save_as("myfile.csv")

You will end up with three csv files:

>>> import glob
>>> outputfiles = glob.glob("myfile_*.csv")
>>> for file in sorted(outputfiles):
... print(file)
...
myfile__Sheet 1__0.csv
myfile__Sheet 2__1.csv
myfile__Sheet 3__2.csv

and their content is the value of the dictionary at the corresponding key

Alternatively, you could use save_book_as() function

>>> pyexcel.save_book_as(bookdict=content, dest_file_name="myfile.csv")

After I have saved my multiple sheet book in csv format, how do I get them back

First of all, you can read them back individual as csv file using meth:~pyexcel.get_sheet method. Secondly, the pyexcel
can do the magic to load all of them back into a book. You will just need to provide the common name before the
separator “__”:

>>> book2 = pyexcel.get_book(file_name="myfile.csv")
>>> book2
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

42 Chapter 2. Support the project



pyexcel, Release 0.5.15

2.4.7 Working with databases

How to import an excel sheet to a database using SQLAlchemy

Note: You can find the complete code of this example in examples folder on github

Before going ahead, let’s import the needed components and initialize sql engine and table base:

>>> import os
>>> import pyexcel as p
>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column , Integer, String, Float, Date
>>> from sqlalchemy.orm import sessionmaker
>>> engine = create_engine("sqlite:///birth.db")
>>> Base = declarative_base()
>>> Session = sessionmaker(bind=engine)

Let’s suppose we have the following database model:

>>> class BirthRegister(Base):
... __tablename__='birth'
... id=Column(Integer, primary_key=True)
... name=Column(String)
... weight=Column(Float)
... birth=Column(Date)

Let’s create the table:

>>> Base.metadata.create_all(engine)

Now here is a sample excel file to be saved to the table:

Here is the code to import it:

>>> session = Session() # obtain a sql session
>>> p.save_as(file_name="birth.xls", name_columns_by_row=0, dest_session=session,
→˓dest_table=BirthRegister)

Done it. It is that simple. Let’s verify what has been imported to make sure.

>>> sheet = p.get_sheet(session=session, table=BirthRegister)
>>> sheet
birth:
+------------+----+-------+--------+
| birth | id | name | weight |
+------------+----+-------+--------+
| 2015-02-03 | 1 | Adam | 3.4 |
+------------+----+-------+--------+
| 2014-11-12 | 2 | Smith | 4.2 |
+------------+----+-------+--------+

2.4. New tutorial 43



pyexcel, Release 0.5.15

2.5 Old tutorial

2.5.1 Work with excel files

Warning: The pyexcel DOES NOT consider Fonts, Styles, Formulas and Charts at all. When you load a stylish
excel and update it, you definitely will lose all those styles.

Open a csv file

Read a csv file is simple:

>>> import pyexcel as p
>>> sheet = p.get_sheet(file_name="example.csv")
>>> sheet
example.csv:
+---+---+---+
| 1 | 4 | 7 |
+---+---+---+
| 2 | 5 | 8 |
+---+---+---+
| 3 | 6 | 9 |
+---+---+---+

The same applies to a tsv file:

>>> sheet = p.get_sheet(file_name="example.tsv")
>>> sheet
example.tsv:
+---+---+---+
| 1 | 4 | 7 |
+---+---+---+
| 2 | 5 | 8 |
+---+---+---+
| 3 | 6 | 9 |
+---+---+---+

Meanwhile, a tab separated file can be read as csv too. You can specify a delimiter parameter.

>>> with open('tab_example.csv', 'w') as f:
... unused = f.write('I\tam\ttab\tseparated\tcsv\n') # for passing doctest
... unused = f.write('You\tneed\tdelimiter\tparameter\n') # unused is added
>>> sheet = p.get_sheet(file_name="tab_example.csv", delimiter='\t')
>>> sheet
tab_example.csv:
+-----+------+-----------+-----------+-----+
| I | am | tab | separated | csv |
+-----+------+-----------+-----------+-----+
| You | need | delimiter | parameter | |
+-----+------+-----------+-----------+-----+

Add a new row to an existing file

Suppose you have one data file as the following:

44 Chapter 2. Support the project



pyexcel, Release 0.5.15

And you want to add a new row:

12, 11, 10

Here is the code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.row += [12, 11, 10]
>>> sheet.save_as("new_example.xls")
>>> pe.get_sheet(file_name="new_example.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+
| 12 | 11 | 10 |
+----------+----------+----------+

Update an existing row to an existing file

Suppose you want to update the last row of the example file as:

[‘N/A’, ‘N/A’, ‘N/A’]

Here is the sample code:

.. code-block:: python

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.row[3] = ['N/A', 'N/A', 'N/A']
>>> sheet.save_as("new_example1.xls")
>>> pe.get_sheet(file_name="new_example1.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| N/A | N/A | N/A |
+----------+----------+----------+

Add a new column to an existing file

And you want to add a column instead:

[“Column 4”, 10, 11, 12]

Here is the code:

2.5. Old tutorial 45



pyexcel, Release 0.5.15

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.column += ["Column 4", 10, 11, 12]
>>> sheet.save_as("new_example2.xls")
>>> pe.get_sheet(file_name="new_example2.xls")
pyexcel_sheet1:
+----------+----------+----------+----------+
| Column 1 | Column 2 | Column 3 | Column 4 |
+----------+----------+----------+----------+
| 1 | 4 | 7 | 10 |
+----------+----------+----------+----------+
| 2 | 5 | 8 | 11 |
+----------+----------+----------+----------+
| 3 | 6 | 9 | 12 |
+----------+----------+----------+----------+

Update an existing column to an existing file

Again let’s update “Column 3” with:

[100, 200, 300]

Here is the sample code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.column[2] = ["Column 3", 100, 200, 300]
>>> sheet.save_as("new_example3.xls")
>>> pe.get_sheet(file_name="new_example3.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 100 |
+----------+----------+----------+
| 2 | 5 | 200 |
+----------+----------+----------+
| 3 | 6 | 300 |
+----------+----------+----------+

Alternatively, you could have done like this:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet.column["Column 3"] = [100, 200, 300]
>>> sheet.save_as("new_example4.xls")
>>> pe.get_sheet(file_name="new_example4.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 100 |
+----------+----------+----------+
| 2 | 5 | 200 |
+----------+----------+----------+
| 3 | 6 | 300 |
+----------+----------+----------+

46 Chapter 2. Support the project



pyexcel, Release 0.5.15

How about the same alternative solution to previous row based example? Well, you’d better to have the following kind
of data:

And then you want to update “Row 3” with for example:

[100, 200, 300]

These code would do the job:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="row_example.xls", name_rows_by_column=0)
>>> sheet.row["Row 3"] = [100, 200, 300]
>>> sheet.save_as("new_example5.xls")
>>> pe.get_sheet(file_name="new_example5.xls")
pyexcel_sheet1:
+-------+-----+-----+-----+
| Row 1 | 1 | 2 | 3 |
+-------+-----+-----+-----+
| Row 2 | 4 | 5 | 6 |
+-------+-----+-----+-----+
| Row 3 | 100 | 200 | 300 |
+-------+-----+-----+-----+

2.5.2 Work with excel files in memory

Excel files in memory can be manipulated directly without saving it to physical disk and vice versa. This is useful in
excel file handling at file upload or in excel file download. For example:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'

file type as its attributes

Since version 0.3.0, each supported file types became an attribute of the Sheet and Book class. What it means is that:

1. Read the content in memory

2. Set the content in memory

For example, after you have your Sheet and Book instance, you could access its content in a support file type by using
its dot notation. The code in previous section could be rewritten as:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

Read any supported excel and respond its content in json

You can find a real world example in examples/memoryfile/ directory: pyexcel_server.py. Here is the example snippet

2.5. Old tutorial 47



pyexcel, Release 0.5.15

1 def upload():
2 if request.method == 'POST' and 'excel' in request.files:
3 # handle file upload
4 filename = request.files['excel'].filename
5 extension = filename.split(".")[-1]
6 # Obtain the file extension and content
7 # pass a tuple instead of a file name
8 content = request.files['excel'].read()
9 if sys.version_info[0] > 2:

10 # in order to support python 3
11 # have to decode bytes to str
12 content = content.decode('utf-8')
13 sheet = pe.get_sheet(file_type=extension, file_content=content)
14 # then use it as usual
15 sheet.name_columns_by_row(0)
16 # respond with a json
17 return jsonify({"result": sheet.dict})
18 return render_template('upload.html')

request.files[‘excel’] in line 4 holds the file object. line 5 finds out the file extension. line 13 obtains a sheet instance.
line 15 uses the first row as data header. line 17 sends the json representation of the excel file back to client browser.

Write to memory and respond to download

1 data = [
2 [...],
3 ...
4 ]
5

6 @app.route('/download')
7 def download():
8 sheet = pe.Sheet(data)
9 output = make_response(sheet.csv)

10 output.headers["Content-Disposition"] = "attachment; filename=export.csv"
11 output.headers["Content-type"] = "text/csv"
12 return output

make_response is a Flask utility to make a memory content as http response.

Note: You can find the corresponding source code at examples/memoryfile

Relevant packages

Readily made plugins have been made on top of this example. Here is a list of them:

framework plugin/middleware/extension
Flask Flask-Excel
Django django-excel
Pyramid pyramid-excel

And you may make your own by using pyexcel-webio

48 Chapter 2. Support the project

https://github.com/chfw/pyexcel/tree/master/examples/memoryfile
https://github.com/chfw/Flask-Excel
https://github.com/chfw/django-excel
https://github.com/chfw/pyramid-excel
https://github.com/chfw/pyexcel-webio


pyexcel, Release 0.5.15

2.5.3 Sheet: Data conversion

How to obtain records from an excel sheet

Suppose you want to process the following excel data :

Here are the example code:

>>> import pyexcel as pe
>>> records = pe.get_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26

How to save an python array as an excel file

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> import pyexcel
>>> pyexcel.save_as(array=data, dest_file_name="example.xls")

Let’s verify it:

>>> pyexcel.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

How to save an python array as a csv file with special delimiter

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> import pyexcel
>>> pyexcel.save_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

Let’s verify it:

2.5. Old tutorial 49



pyexcel, Release 0.5.15

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

How to get a dictionary from an excel sheet

Suppose you have a csv, xls, xlsx file as the following:

The following code will give you data series in a dictionary:

>>> import pyexcel
>>> from pyexcel._compact import OrderedDict
>>> my_dict = pyexcel.get_dict(file_name="example_series.xls", name_columns_by_row=0)
>>> isinstance(my_dict, OrderedDict)
True
>>> for key, values in my_dict.items():
... print({str(key): values})
{'Column 1': [1, 4, 7]}
{'Column 2': [2, 5, 8]}
{'Column 3': [3, 6, 9]}

Please note that my_dict is an OrderedDict.

How to obtain a dictionary from a multiple sheet book

Suppose you have a multiple sheet book as the following:

Here is the code to obtain those sheets as a single dictionary:

>>> import pyexcel
>>> import json
>>> book_dict = pyexcel.get_book_dict(file_name="book.xls")
>>> isinstance(book_dict, OrderedDict)
True
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

How to save a dictionary of two dimensional array as an excel file

Suppose you want to save the below dictionary to an excel file

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]

(continues on next page)

50 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

... ],

... 'Sheet 2':

... [

... ['X', 'Y', 'Z'],

... [1.0, 2.0, 3.0],

... [4.0, 5.0, 6.0]

... ],

... 'Sheet 3':

... [

... ['O', 'P', 'Q'],

... [3.0, 2.0, 1.0],

... [4.0, 3.0, 2.0]

... ]

... }

Here is the code:

>>> pyexcel.save_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
... )

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> pyexcel.save_book_as(bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> book_dict = pyexcel.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

How to import an excel sheet to a database using SQLAlchemy

Note: You can find the complete code of this example in examples folder on github

Before going ahead, let’s import the needed components and initialize sql engine and table base:

>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column , Integer, String, Float, Date
>>> from sqlalchemy.orm import sessionmaker
>>> engine = create_engine("sqlite:///birth.db")

(continues on next page)

2.5. Old tutorial 51



pyexcel, Release 0.5.15

(continued from previous page)

>>> Base = declarative_base()
>>> Session = sessionmaker(bind=engine)

Let’s suppose we have the following database model:

>>> class BirthRegister(Base):
... __tablename__='birth'
... id=Column(Integer, primary_key=True)
... name=Column(String)
... weight=Column(Float)
... birth=Column(Date)

Let’s create the table:

>>> Base.metadata.create_all(engine)

Now here is a sample excel file to be saved to the table:

Here is the code to import it:

>>> session = Session() # obtain a sql session
>>> pyexcel.save_as(file_name="birth.xls", name_columns_by_row=0, dest_
→˓session=session, dest_table=BirthRegister)

Done it. It is that simple. Let’s verify what has been imported to make sure.

>>> sheet = pyexcel.get_sheet(session=session, table=BirthRegister)
>>> sheet
birth:
+------------+----+-------+--------+
| birth | id | name | weight |
+------------+----+-------+--------+
| 2015-02-03 | 1 | Adam | 3.4 |
+------------+----+-------+--------+
| 2014-11-12 | 2 | Smith | 4.2 |
+------------+----+-------+--------+

How to open an xls file and save it as csv

Suppose we want to save previous used example ‘birth.xls’ as a csv file

>>> import pyexcel
>>> pyexcel.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = pyexcel.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

52 Chapter 2. Support the project



pyexcel, Release 0.5.15

Note: Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls
file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

How to open an xls file and save it as xlsx

Warning: Formula, charts, images and formatting in xls file will disappear as pyexcel does not support Formula,
charts, images and formatting.

Let use previous example and save it as ods instead

>>> import pyexcel
>>> pyexcel.save_as(file_name="birth.xls",
... dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = pyexcel.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

How to open a xls multiple sheet excel book and save it as csv

Well, you write similar codes as before but you will need to use save_book_as() function.

2.5.4 Dot notation for data source

Since version 0.3.0, the data source becomes an attribute of the pyexcel native classes. All support data format is a dot
notation away.

For sheet

Get content

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.tsv
'1\t2\t3\r\n3\t4\t5\r\n'
>>> print(sheet.simple)

(continues on next page)

2.5. Old tutorial 53



pyexcel, Release 0.5.15

(continued from previous page)

csv:
- - -
1 2 3
3 4 5
- - -

What’s more, you could as well set value to an attribute, for example:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

You can get the direct access to underneath stream object. In some situation, it is desired.

>>> stream = sheet.stream.tsv

The returned stream object has tsv formatted content for reading.

Set content

What you could further do is to set a memory stream of any supported file format to a sheet. For example:

>>> another_sheet = pyexcel.Sheet()
>>> another_sheet.xls = sheet.xls
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 3 | 4 | 5 |
+---+---+---+

Yet, it is possible assign a absolute url to an online excel file to an instance of pyexcel.Sheet.

>>> another_sheet.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/
→˓basics/multiple-sheets-example.xls"
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

For book

The same dot notation is available to pyexcel.Book as well.

54 Chapter 2. Support the project



pyexcel, Release 0.5.15

Get content

>>> book_dict = {
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ],
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ]
... }
>>> book = pyexcel.get_book(bookdict=book_dict)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+
>>> print(book.rst)
Sheet 1:
= = =
1 2 3
4 5 6
7 8 9
= = =
Sheet 2:
=== === ===

(continues on next page)

2.5. Old tutorial 55



pyexcel, Release 0.5.15

(continued from previous page)

X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
=== === ===
Sheet 3:
=== === ===
O P Q
3.0 2.0 1.0
4.0 3.0 2.0
=== === ===

You can get the direct access to underneath stream object. In some situation, it is desired.

>>> stream = sheet.stream.plain

The returned stream object has the content formatted in plain format for further reading.

Set content

Surely, you could set content to an instance of pyexcel.Book.

>>> other_book = pyexcel.Book()
>>> other_book.bookdict = book_dict
>>> print(other_book.plain)
Sheet 1:
1 2 3
4 5 6
7 8 9
Sheet 2:
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
Sheet 3:
O P Q
3.0 2.0 1.0
4.0 3.0 2.0

You can set via ‘xls’ attribute too.

>>> another_book = pyexcel.Book()
>>> another_book.xls = other_book.xls
>>> print(another_book.mediawiki)
Sheet 1:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| align="right"| 1 || align="right"| 2 || align="right"| 3
|-
| align="right"| 4 || align="right"| 5 || align="right"| 6
|-
| align="right"| 7 || align="right"| 8 || align="right"| 9
|}
Sheet 2:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->

(continues on next page)

56 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

|-
| X || Y || Z
|-
| 1 || 2 || 3
|-
| 4 || 5 || 6
|}
Sheet 3:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| O || P || Q
|-
| 3 || 2 || 1
|-
| 4 || 3 || 2
|}

How about setting content via a url?

>>> another_book.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/
→˓multiple-sheets-example.xls"
>>> another_book
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
Sheet 2:
+---+---+---+
| X | Y | Z |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
Sheet 3:
+---+---+---+
| O | P | Q |
+---+---+---+
| 3 | 2 | 1 |
+---+---+---+
| 4 | 3 | 2 |
+---+---+---+

Getters and Setters

You can pass on source specific parameters to getter and setter functions.

>>> content = "1-2-3\n3-4-5"
>>> sheet = pyexcel.Sheet()
>>> sheet.set_csv(content, delimiter="-")

(continues on next page)

2.5. Old tutorial 57



pyexcel, Release 0.5.15

(continued from previous page)

>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'
>>> sheet.get_csv(delimiter="|")
'1|2|3\r\n3|4|5\r\n'

2.5.5 Read partial data

Here the code to get an array of data from your excel file.

The following code will give you the data in json:

>>> import pyexcel
>>> # "example.csv","example.xlsx","example.xlsm"
>>> my_array = pyexcel.get_array(file_name="example.xls")
>>> my_array
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Pagination

When you are dealing with huge amount of data, e.g. 64GB, obviously you would not like to fill up your memory with
those data. Hence pagination feature is developed to read partial data into memory for processing. You can paginate
by row, by column and by both.

Please note that pyexcel-xls, pyexcel-xlsx, pyexcel-ods and pyexcel-ods3 will read all data into memory. And pagination
code here only limits the data returned to your program. With that said, csv readers, pyexcel-xlsxr and pyexcel-odsr
DOES read partial data into memory.

Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
... ]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

58 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

Note: No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free RAM
is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but increase
each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

2.5. Old tutorial 59



pyexcel, Release 0.5.15

Note: If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

2.5.6 Sheet: Data Access

Iterate a csv file

Here is the way to read the csv file and iterate through each row:

>>> sheet = pyexcel.get_sheet(file_name='tutorial.csv')
>>> for row in sheet:
... print("%s: %s" % (row[0], row[1]))
Name: Age
Chu Chu: 10
Mo mo: 11

Often people wanted to use csv.Dict reader to read it because it has a header. Here is how you do it with pyexcel:

1 >>> sheet = pyexcel.get_sheet(file_name='tutorial.csv')
2 >>> sheet.name_columns_by_row(0)
3 >>> for row in sheet:
4 ... print("%s: %s" % (row[0], row[1]))
5 Chu Chu: 10
6 Mo mo: 11

Line 2 remove the header from the actual content. The removed header can be used to access its columns using the
name itself, for example:

>>> sheet.column['Age']
[10, 11]

Random access to individual cell

Top left corner of a sheet is (0, 0), meaning both row index and column index start from 0. To randomly access a cell
of Sheet instance, two syntax are available:

60 Chapter 2. Support the project



pyexcel, Release 0.5.15

sheet[row, column]

This syntax helps you iterate the data by row and by column. If you use excel positions, the syntax below help you get
the cell instantly without converting alphabet column index to integer:

sheet['A1']

Please note that with excel positions, top left corner is ‘A1’.

For example: suppose you have the following data sheet,

here is the example code showing how you can randomly access a cell:

>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> sheet.content
+---------+---+---+---+
| Example | X | Y | Z |
+---------+---+---+---+
| a | 1 | 2 | 3 |
+---------+---+---+---+
| b | 4 | 5 | 6 |
+---------+---+---+---+
| c | 7 | 8 | 9 |
+---------+---+---+---+
>>> print(sheet[3, 2])
8
>>> print(sheet["D3"])
6
>>> sheet[2, 3] = 10
>>> print(sheet[2, 3])
10

Note: In order to set a value to a cell, please use sheet[row_index, column_index] = new_value

Random access to rows and columns

Continue with previous excel file, you can access row and column separately:

>>> sheet.row[1]
['a', 1, 2, 3]
>>> sheet.column[2]
['Y', 2, 5, 8]

Use custom names instead of index

Alternatively, it is possible to use the first row to refer to each columns:

>>> sheet.name_columns_by_row(0)
>>> print(sheet[1, "Y"])
5
>>> sheet[1, "Y"] = 100
>>> print(sheet[1, "Y"])
100

2.5. Old tutorial 61



pyexcel, Release 0.5.15

You have noticed the row index has been changed. It is because first row is taken as the column names, hence all rows
after the first row are shifted. Now accessing the columns are changed too:

>>> sheet.column['Y']
[2, 100, 8]

Hence access the same cell, this statement also works:

>>> sheet.column['Y'][1]
100

Further more, it is possible to use first column to refer to each rows:

>>> sheet.name_rows_by_column(0)

To access the same cell, we can use this line:

>>> sheet.row["b"][1]
100

For the same reason, the row index has been reduced by 1. Since we have named columns and rows, it is possible to
access the same cell like this:

>>> print(sheet["b", "Y"])
100
>>> sheet["b", "Y"] = 200
>>> print(sheet["b", "Y"])
200

Note: When you have named your rows and columns, in order to set a value to a cell, please use sheet[row_name,
column_name] = new_value

For multiple sheet file, you can regard it as three dimensional array if you use Book. So, you access each cell via this
syntax:

book[sheet_index][row, column]

or:

book["sheet_name"][row, column]

Suppose you have the following sheets:

And you can randomly access a cell in a sheet:

>>> book = pyexcel.get_book(file_name="example.xls")
>>> print(book["Sheet 1"][0,0])
1
>>> print(book[0][0,0]) # the same cell
1

Tip: With pyexcel, you can regard single sheet reader as an two dimensional array and multi-sheet excel book reader
as a ordered dictionary of two dimensional arrays.

62 Chapter 2. Support the project



pyexcel, Release 0.5.15

Reading a single sheet excel file

Suppose you have a csv, xls, xlsx file as the following:

The following code will give you the data in json:

>>> import json
>>> # "example.csv","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> print(json.dumps(sheet.to_array()))
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Read the sheet as a dictionary

Suppose you have a csv, xls, xlsx file as the following:

The following code will give you data series in a dictionary:

>>> # "example.xls","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6,
→˓9])])

Can I get an array of dictionaries per each row?

Suppose you have the following data:

The following code will produce what you want:

>>> # "example.csv","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> records = sheet.to_records()
>>> for record in records:
... keys = sorted(record.keys())
... print("{")
... for key in keys:
... print("'%s':%d" % (key, record[key]))
... print("}")
{
'X':1
'Y':2
'Z':3
}
{
'X':4
'Y':5
'Z':6
}
{
'X':7
'Y':8
'Z':9
}

2.5. Old tutorial 63



pyexcel, Release 0.5.15

Writing a single sheet excel file

Suppose you have an array as the following:

1 2 3
4 5 6
7 8 9

The following code will write it as an excel file of your choice:

.. testcode::

>>> array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> # "output.xls" "output.xlsx" "output.ods" "output.xlsm"
>>> sheet = pyexcel.Sheet(array)
>>> sheet.save_as("output.csv")

Suppose you have a dictionary as the following:

The following code will write it as an excel file of your choice:

>>> example_dict = {"Column 1": [1, 2, 3], "Column 2": [4, 5, 6], "Column 3": [7, 8,
→˓9]}
>>> # "output.xls" "output.xlsx" "output.ods" "output.xlsm"
>>> sheet = pyexcel.get_sheet(adict=example_dict)
>>> sheet.save_as("output.csv")

Write multiple sheet excel file

Suppose you have previous data as a dictionary and you want to save it as multiple sheet excel file:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }
>>> book = pyexcel.get_book(bookdict=content)
>>> book.save_as("output.xls")

You shall get a xls file

64 Chapter 2. Support the project



pyexcel, Release 0.5.15

Read multiple sheet excel file

Let’s read the previous file back:

>>> book = pyexcel.get_book(file_name="output.xls")
>>> sheets = book.to_dict()
>>> for name in sheets.keys():
... print(name)
Sheet 1
Sheet 2
Sheet 3

Work with data series in a single sheet

Suppose you have the following data in any of the supported excel formats again:

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)

Play with data

You can get headers:

>>> print(list(sheet.colnames))
['Column 1', 'Column 2', 'Column 3']

You can use a utility function to get all in a dictionary:

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6,
→˓9])])

Maybe you want to get only the data without the column headers. You can call rows() instead:

>>> list(sheet.rows())
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

You can get data from the bottom to the top one by calling rrows() instead:

>>> list(sheet.rrows())
[[7, 8, 9], [4, 5, 6], [1, 2, 3]]

You might want the data arranged vertically. You can call columns() instead:

>>> list(sheet.columns())
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

You can get columns in reverse sequence as well by calling rcolumns() instead:

>>> list(sheet.rcolumns())
[[3, 6, 9], [2, 5, 8], [1, 4, 7]]

Do you want to flatten the data? You can get the content in one dimensional array. If you are interested in playing with
one dimensional enumeration, you can check out these functions enumerate(), reverse(), vertical(), and
rvertical():

2.5. Old tutorial 65



pyexcel, Release 0.5.15

>>> list(sheet.enumerate())
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(sheet.reverse())
[9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(sheet.vertical())
[1, 4, 7, 2, 5, 8, 3, 6, 9]
>>> list(sheet.rvertical())
[9, 6, 3, 8, 5, 2, 7, 4, 1]

2.5.7 Sheet: Data manipulation

The data in a sheet is represented by Sheet which maintains the data as a list of lists. You can regard Sheet as a
two dimensional array with additional iterators. Random access to individual column and row is exposed by Column
and Row

Column manipulation

Suppose have one data file as the following:

>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+

And you want to update Column 2 with these data: [11, 12, 13]

>>> sheet.column["Column 2"] = [11, 12, 13]
>>> sheet.column[1]
[11, 12, 13]
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 11 | 7 |
+----------+----------+----------+
| 2 | 12 | 8 |
+----------+----------+----------+
| 3 | 13 | 9 |
+----------+----------+----------+

Remove one column of a data file

If you want to remove Column 2, you can just call:

66 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> del sheet.column["Column 2"]
>>> sheet.column["Column 3"]
[7, 8, 9]

The sheet content will become:

>>> sheet
pyexcel sheet:
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 1 | 7 |
+----------+----------+
| 2 | 8 |
+----------+----------+
| 3 | 9 |
+----------+----------+

Append more columns to a data file

Continue from previous example. Suppose you want add two more columns to the data file

Column 4 Column 5
10 13
11 14
12 15

Here is the example code to append two extra columns:

>>> extra_data = [
... ["Column 4", "Column 5"],
... [10, 13],
... [11, 14],
... [12, 15]
... ]
>>> sheet2 = pyexcel.Sheet(extra_data)
>>> sheet.column += sheet2
>>> sheet.column["Column 4"]
[10, 11, 12]
>>> sheet.column["Column 5"]
[13, 14, 15]

Here is what you will get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+----------+
| Column 1 | Column 3 | Column 4 | Column 5 |
+==========+==========+==========+==========+
| 1 | 7 | 10 | 13 |
+----------+----------+----------+----------+
| 2 | 8 | 11 | 14 |
+----------+----------+----------+----------+
| 3 | 9 | 12 | 15 |
+----------+----------+----------+----------+

2.5. Old tutorial 67



pyexcel, Release 0.5.15

Cherry pick some columns to be removed

Suppose you have the following data:

>>> data = [
... ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'],
... [1,2,3,4,5,6,7,9],
... ]
>>> sheet = pyexcel.Sheet(data, name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+---+---+---+---+---+---+---+---+
| a | b | c | d | e | f | g | h |
+===+===+===+===+===+===+===+===+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
+---+---+---+---+---+---+---+---+

And you want to remove columns named as: ‘a’, ‘c, ‘e’, ‘h’. This is how you do it:

>>> del sheet.column['a', 'c', 'e', 'h']
>>> sheet
pyexcel sheet:
+---+---+---+---+
| b | d | f | g |
+===+===+===+===+
| 2 | 4 | 6 | 7 |
+---+---+---+---+

What if the headers are in a different row

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| 1 | 2 | 3 |
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

The way to name your columns is to use index 1:

>>> sheet.name_columns_by_row(1)

Here is what you get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+

(continues on next page)

68 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

| 4 | 5 | 6 |
+----------+----------+----------+

Row manipulation

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+---+---+---+-------+
| a | b | c | Row 1 |
+---+---+---+-------+
| e | f | g | Row 2 |
+---+---+---+-------+
| 1 | 2 | 3 | Row 3 |
+---+---+---+-------+

You can name your rows by column index at 3:

>>> sheet.name_rows_by_column(3)
>>> sheet
pyexcel sheet:
+-------+---+---+---+
| Row 1 | a | b | c |
+-------+---+---+---+
| Row 2 | e | f | g |
+-------+---+---+---+
| Row 3 | 1 | 2 | 3 |
+-------+---+---+---+

Then you can access rows by its name:

>>> sheet.row["Row 1"]
['a', 'b', 'c']

2.5.8 Sheet: Data filtering

use filter() function to apply a filter immediately. The content is modified.

Suppose you have the following data in any of the supported excel formats:

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

>>> import pyexcel

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |

(continues on next page)

2.5. Old tutorial 69



pyexcel, Release 0.5.15

(continued from previous page)

+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+
| 7 | 8 | 9 |
+----------+----------+----------+

Filter out some data

You may want to filter odd rows and print them in an array of dictionaries:

>>> sheet.filter(row_indices=[0, 2])
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 4 | 5 | 6 |
+----------+----------+----------+

Let’s try to further filter out even columns:

>>> sheet.filter(column_indices=[1])
>>> sheet.content
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 4 | 6 |
+----------+----------+

Save the data

Let’s save the previous filtered data:

>>> sheet.save_as("example_series_filter.xls")

When you open example_series_filter.xls, you will find these data

Column 1 Column 3
2 8

How to filter out empty rows in my sheet?

Suppose you have the following data in a sheet and you want to remove those rows with blanks:

>>> import pyexcel as pe
>>> sheet = pe.Sheet([[1,2,3],['','',''],['','',''],[1,2,3]])

You can use pyexcel.filters.RowValueFilter, which examines each row, return True if the row should be
filtered out. So, let’s define a filter function:

70 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> def filter_row(row_index, row):
... result = [element for element in row if element != '']
... return len(result)==0

And then apply the filter on the sheet:

>>> del sheet.row[filter_row]
>>> sheet
pyexcel sheet:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

2.5.9 Sheet: Formatting

Previous section has assumed the data is in the format that you want. In reality, you have to manipulate the data types
a bit to suit your needs. Hence, formatters comes into the scene. use format() to apply formatter immediately.

Note: int, float and datetime values are automatically detected in csv files since pyexcel version 0.2.2

Convert a column of numbers to strings

Suppose you have the following data:

>>> import pyexcel
>>> data = [
... ["userid","name"],
... [10120,"Adam"],
... [10121,"Bella"],
... [10122,"Cedar"]
... ]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.name_columns_by_row(0)
>>> sheet.column["userid"]
[10120, 10121, 10122]

As you can see, userid column is of int type. Next, let’s convert the column to string format:

>>> sheet.column.format("userid", str)
>>> sheet.column["userid"]
['10120', '10121', '10122']

Cleanse the cells in a spread sheet

Sometimes, the data in a spreadsheet may have unwanted strings in all or some cells. Let’s take an example. Suppose
we have a spread sheet that contains all strings but it as random spaces before and after the text values. Some field had
weird characters, such as “&nbsp;&nbsp;”:

2.5. Old tutorial 71



pyexcel, Release 0.5.15

>>> data = [
... [" Version", " Comments", " Author &nbsp;"],
... [" v0.0.1 ", " Release versions"," &nbsp;Eda"],
... ["&nbsp; v0.0.2 ", "Useful updates &nbsp; &nbsp;", " &nbsp;Freud"]
... ]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.content
+-----------------+------------------------------+----------------------+
| Version | Comments | Author &nbsp; |
+-----------------+------------------------------+----------------------+
| v0.0.1 | Release versions | &nbsp;Eda |
+-----------------+------------------------------+----------------------+
| &nbsp; v0.0.2 | Useful updates &nbsp; &nbsp; | &nbsp;Freud |
+-----------------+------------------------------+----------------------+

Now try to create a custom cleanse function:

.. code-block:: python

>>> def cleanse_func(v):
... v = v.replace("&nbsp;", "")
... v = v.rstrip().strip()
... return v
...

Then let’s create a SheetFormatter and apply it:

.. code-block:: python

>>> sheet.map(cleanse_func)

So in the end, you get this:

>>> sheet.content
+---------+------------------+--------+
| Version | Comments | Author |
+---------+------------------+--------+
| v0.0.1 | Release versions | Eda |
+---------+------------------+--------+
| v0.0.2 | Useful updates | Freud |
+---------+------------------+--------+

2.5.10 Book: Sheet operations

Access to individual sheets

You can access individual sheet of a book via attribute:

>>> book = pyexcel.get_book(file_name="book.xls")
>>> book.sheet3
sheet3:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

(continues on next page)

72 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

or via array notations:

>>> book["sheet 1"] # there is a space in the sheet name
sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+

Merge excel books

Suppose you have two excel books and each had three sheets. You can merge them and get a new book:

You also can merge individual sheets:

>>> book1 = pyexcel.get_book(file_name="book1.xls")
>>> book2 = pyexcel.get_book(file_name="book2.xlsx")
>>> merged_book = book1 + book2
>>> merged_book = book1["Sheet 1"] + book2["Sheet 2"]
>>> merged_book = book1["Sheet 1"] + book2
>>> merged_book = book1 + book2["Sheet 2"]

Manipulate individual sheets

merge sheets into a single sheet

Suppose you want to merge many csv files row by row into a new sheet.

>>> import glob
>>> merged = pyexcel.Sheet()
>>> for file in glob.glob("*.csv"):
... merged.row += pyexcel.get_sheet(file_name=file)
>>> merged.save_as("merged.csv")

How do I read a book, process it and save to a new book

Yes, you can do that. The code looks like this:

import pyexcel

book = pyexcel.get_book(file_name="yourfile.xls")
for sheet in book:

# do you processing with sheet
# do filtering?

(continues on next page)

2.5. Old tutorial 73



pyexcel, Release 0.5.15

(continued from previous page)

pass
book.save_as("output.xls")

What would happen if I save a multi sheet book into “csv” file

Well, you will get one csv file per each sheet. Suppose you have these code:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }
>>> book = pyexcel.Book(content)
>>> book.save_as("myfile.csv")

You will end up with three csv files:

>>> import glob
>>> outputfiles = glob.glob("myfile_*.csv")
>>> for file in sorted(outputfiles):
... print(file)
...
myfile__Sheet 1__0.csv
myfile__Sheet 2__1.csv
myfile__Sheet 3__2.csv

and their content is the value of the dictionary at the corresponding key

Alternatively, you could use save_book_as() function

>>> pyexcel.save_book_as(bookdict=content, dest_file_name="myfile.csv")

After I have saved my multiple sheet book in csv format, how do I get them back

First of all, you can read them back individual as csv file using meth:~pyexcel.get_sheet method. Secondly, the pyexcel
can do the magic to load all of them back into a book. You will just need to provide the common name before the
separator “__”:

74 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> book2 = pyexcel.get_book(file_name="myfile.csv")
>>> book2
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

2.6 Cook book

2.6.1 Recipes

Warning: The pyexcel DOES NOT consider Fonts, Styles and Charts at all. In the resulting excel files, fonts,
styles and charts will not be transferred.

These recipes give a one-stop utility functions for known use cases. Similar functionality can be achieved using other
application interfaces.

Update one column of a data file

Suppose you have one data file as the following:

example.xls

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

And you want to update Column 2 with these data: [11, 12, 13]

Here is the code:

2.6. Cook book 75



pyexcel, Release 0.5.15

>>> from pyexcel.cookbook import update_columns
>>> custom_column = {"Column 2":[11, 12, 13]}
>>> update_columns("example.xls", custom_column, "output.xls")

Your output.xls will have these data:

Column 1 Column 2 Column 3
1 11 7
2 12 8
3 13 9

Update one row of a data file

Suppose you have the same data file:

example.xls

Row 1 1 2 3
Row 2 4 5 6
Row 3 7 8 9

And you want to update the second row with these data: [7, 4, 1]

Here is the code:

>>> from pyexcel.cookbook import update_rows
>>> custom_row = {"Row 1":[11, 12, 13]}
>>> update_rows("example.xls", custom_row, "output.xls")
>>> pyexcel.get_sheet(file_name="output.xls")
pyexcel sheet:
+-------+----+----+----+
| Row 1 | 11 | 12 | 13 |
+-------+----+----+----+
| Row 2 | 4 | 5 | 6 |
+-------+----+----+----+
| Row 3 | 7 | 8 | 9 |
+-------+----+----+----+

Merge two files into one

Suppose you want to merge the following two data files:

example.csv

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

example.xls

76 Chapter 2. Support the project



pyexcel, Release 0.5.15

Column 4 Column 5
10 12
11 13

The following code will merge the tow into one file, say “output.xls”:

>>> from pyexcel.cookbook import merge_two_files
>>> merge_two_files("example.csv", "example.xls", "output.xls")

The output.xls would have the following data:

Column 1 Column 2 Column 3 Column 4 Column 5
1 4 7 10 12
2 5 8 11 13
3 6 9

Select candidate columns of two files and form a new one

Suppose you have these two files:

example.ods

Column 1 Column 2 Column 3 Column 4 Column 5
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

example.xls

Column 6 Column 7 Column 8 Column 9 Column 10
16 17 18 19 20

>>> data = [
... ["Column 1", "Column 2", "Column 3", "Column 4", "Column 5"],
... [1, 4, 7, 10, 13],
... [2, 5, 8, 11, 14],
... [3, 6, 9, 12, 15]
... ]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.csv")
>>> data = [
... ["Column 6", "Column 7", "Column 8", "Column 9", "Column 10"],
... [16, 17, 18, 19, 20]
... ]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.xls")

And you want to filter out column 2 and 4 from example.ods, filter out column 6 and 7 and merge them:

2.6. Cook book 77



pyexcel, Release 0.5.15

Column 1 Column 3 Column 5 Column 8 Column 9 Column 10
1 7 13 18 19 20
2 8 14
3 9 15

The following code will do the job:

>>> from pyexcel.cookbook import merge_two_readers
>>> sheet1 = pyexcel.get_sheet(file_name="example.csv", name_columns_by_row=0)
>>> sheet2 = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> del sheet1.column[1, 3, 5]
>>> del sheet2.column[0, 1]
>>> merge_two_readers(sheet1, sheet2, "output.xls")

Merge two files into a book where each file become a sheet

Suppose you want to merge the following two data files:

example.csv

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

example.xls

Column 4 Column 5
10 12
11 13

>>> data = [
... ["Column 1", "Column 2", "Column 3"],
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]
... ]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.csv")
>>> data = [
... ["Column 4", "Column 5"],
... [10, 12],
... [11, 13]
... ]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.xls")

The following code will merge the tow into one file, say “output.xls”:

>>> from pyexcel.cookbook import merge_all_to_a_book
>>> merge_all_to_a_book(["example.csv", "example.xls"], "output.xls")

78 Chapter 2. Support the project



pyexcel, Release 0.5.15

The output.xls would have the following data:

example.csv as sheet name and inside the sheet, you have:

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

example.ods as sheet name and inside the sheet, you have:

Column 4 Column 5
10 12
11 13

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say “output.xls”:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_csv_directory\*.csv"), "output.xls")

You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls,
xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_excel_file_directory\*.*"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You
can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob("*_output.xls")
>>> for file in sorted(outputfiles):
... print(file)
...
Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

for the output file, you can specify any of the supported formats

2.6. Cook book 79



pyexcel, Release 0.5.15

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate
it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls")
>>> if os.path.exists("Sheet 1_output.xls"):
... print("Sheet 1_output.xls exists")
...
Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

2.6.2 Loading from other sources

Get back into pyexcel

list

>>> import pyexcel as p
>>> two_dimensional_list = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
>>> sheet = p.get_sheet(array=two_dimensional_list)
>>> sheet
pyexcel_sheet1:
+---+----+----+----+
| 1 | 2 | 3 | 4 |
+---+----+----+----+
| 5 | 6 | 7 | 8 |
+---+----+----+----+
| 9 | 10 | 11 | 12 |
+---+----+----+----+

dict

>>> a_dictionary_of_key_value_pair = {
... "IE": 0.2,
... "Firefox": 0.3
... }
>>> sheet = p.get_sheet(adict=a_dictionary_of_key_value_pair)
>>> sheet
pyexcel_sheet1:
+---------+-----+
| Firefox | IE |
+---------+-----+
| 0.3 | 0.2 |
+---------+-----+

80 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> a_dictionary_of_one_dimensional_arrays = {
... "Column 1": [1, 2, 3, 4],
... "Column 2": [5, 6, 7, 8],
... "Column 3": [9, 10, 11, 12],
... }
>>> sheet = p.get_sheet(adict=a_dictionary_of_one_dimensional_arrays)
>>> sheet
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 5 | 9 |
+----------+----------+----------+
| 2 | 6 | 10 |
+----------+----------+----------+
| 3 | 7 | 11 |
+----------+----------+----------+
| 4 | 8 | 12 |
+----------+----------+----------+

records

>>> a_list_of_dictionaries = [
... {
... "Name": 'Adam',
... "Age": 28
... },
... {
... "Name": 'Beatrice',
... "Age": 29
... },
... {
... "Name": 'Ceri',
... "Age": 30
... },
... {
... "Name": 'Dean',
... "Age": 26
... }
... ]
>>> sheet = p.get_sheet(records=a_list_of_dictionaries)
>>> sheet
pyexcel_sheet1:
+-----+----------+
| Age | Name |
+-----+----------+
| 28 | Adam |
+-----+----------+
| 29 | Beatrice |
+-----+----------+
| 30 | Ceri |
+-----+----------+
| 26 | Dean |
+-----+----------+

2.6. Cook book 81



pyexcel, Release 0.5.15

book dict

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
... ],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
... ],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
... ]
... }
>>> book = p.get_book(bookdict=a_dictionary_of_two_dimensional_arrays)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

How to load a sheet from a url

Suppose you have excel file somewhere hosted:

>>> sheet = pe.get_sheet(url='http://yourdomain.com/test.csv')
>>> sheet

(continues on next page)

82 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

csv:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

For sheet

Get content

>>> another_sheet = p.Sheet()
>>> another_sheet.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/
→˓basics/multiple-sheets-example.xls"
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

For book

How about setting content via a url?

>>> another_book = p.Book()
>>> another_book.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/
→˓multiple-sheets-example.xls"
>>> another_book
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
Sheet 2:
+---+---+---+
| X | Y | Z |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
Sheet 3:
+---+---+---+
| O | P | Q |
+---+---+---+
| 3 | 2 | 1 |
+---+---+---+

(continues on next page)

2.6. Cook book 83



pyexcel, Release 0.5.15

(continued from previous page)

| 4 | 3 | 2 |
+---+---+---+

2.7 Real world cases

2.7.1 Questions and Answers

1. Python flask writing to a csv file and reading it

2. PyQt: Import .xls file and populate QTableWidget?

3. How do I write data to csv file in columns and rows from a list in python?

4. How to write dictionary values to a csv file using Python

5. Python convert csv to xlsx

6. How to read data from excel and set data type

7. Remove or keep specific columns in csv file

8. How can I put a CSV file in an array?

2.7.2 How to inject csv data to database

Here is real case in the stack-overflow. Due to the author’s ignorance, the user would like to have the code in matlab
than Python. Hence, I am sharing my pyexcel solution here.

Problem definition

Here is my CSV file:

PDB_Id 123442 234335 234336 3549867
a001 6 0 0 8
b001 4 2 0 0
c003 0 0 0 5

I want to put this data in a MYSQL table in the form:

PROTEIN_ID PROTEIN_KEY VALUE_OF_KEY
a001 123442 6
a001 234335 0
a001 234336 0
a001 3549867 8
b001 123442 4
b001 234335 2
b001 234336 0
b001 234336 0
c003 123442 0
c003 234335 0
c003 234336 0
c003 3549867 5

I have created table with the following code:

84 Chapter 2. Support the project

http://stackoverflow.com/questions/27338891/python-flask-writing-to-a-csv-file-and-reading-it#27348717
http://stackoverflow.com/questions/11817161/pyqt-import-xls-file-and-populate-qtablewidget#25910499
http://stackoverflow.com/questions/7528801/how-do-i-write-data-to-csv-file-in-columns-and-rows-from-a-list-in-python/27108294#27108294
http://stackoverflow.com/questions/26901570/how-to-write-dictionary-values-to-a-csv-file-using-python/26950398#26950398
http://stackoverflow.com/questions/17684610/python-convert-csv-to-xlsx/26456641#26456641
http://stackoverflow.com/questions/26953628/how-to-read-data-from-excel-and-set-data-type/27138572#27138572
http://stackoverflow.com/questions/27342590/remove-or-keep-specific-columns-in-csv-file/27348897#27348897
http://stackoverflow.com/questions/27318907/how-can-i-put-a-csv-file-in-an-array/27348806#27348806
http://stackoverflow.com/questions/43837878/csv-to-mysql-in-matlab-code


pyexcel, Release 0.5.15

sql = """CREATE TABLE ALLPROTEINS (
Protein_ID CHAR(20),
PROTEIN_KEY INT ,
VALUE_OF_KEY INT
)"""

I need the code for insert.

Pyexcel solution

If you could insert an id field to act as the primary key, it can be mapped using sqlalchemy’s ORM:

$ sqlite3 /tmp/stack2.db
sqlite> CREATE TABLE ALLPROTEINS (

...> ID INT,

...> Protein_ID CHAR(20),

...> PROTEIN_KEY INT,

...> VALUE_OF_KEY INT

...> );

Here is the data mapping script vis sqlalchemy:

>>> # mapping your database via sqlalchemy
>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column, Integer, String
>>> from sqlalchemy.orm import sessionmaker
>>> # checkout http://docs.sqlalchemy.org/en/latest/dialects/index.html
>>> # for a different database server
>>> engine = create_engine("sqlite:////tmp/stack2.db")
>>> Base = declarative_base()
>>> class Proteins(Base):
... __tablename__ = 'ALLPROTEINS'
... id = Column(Integer, primary_key=True, autoincrement=True) # <-- appended
→˓field
... protein_id = Column(String(20))
... protein_key = Column(Integer)
... value_of_key = Column(Integer)
>>> Session = sessionmaker(bind=engine)
>>>

Here is the short script to get data inserted into the database:

>>> import pyexcel as p
>>> from itertools import product
>>> # data insertion code starts here
>>> sheet = p.get_sheet(file_name="csv-to-mysql-in-matlab-code.csv", delimiter='\t')
>>> sheet.name_columns_by_row(0)
>>> sheet.name_rows_by_column(0)
>>> print(sheet)
csv-to-mysql-in-matlab-code.csv:
+------+--------+--------+--------+---------+
| | 123442 | 234335 | 234336 | 3549867 |
+======+========+========+========+=========+
| a001 | 6 | 0 | 0 | 8 |
+------+--------+--------+--------+---------+

(continues on next page)

2.7. Real world cases 85



pyexcel, Release 0.5.15

(continued from previous page)

| b001 | 4 | 2 | 0 | 0 |
+------+--------+--------+--------+---------+
| c003 | 0 | 0 | 0 | 5 |
+------+--------+--------+--------+---------+
>>> results = []
>>> for protein_id, protein_key in product(sheet.rownames, sheet.colnames):
... results.append([protein_id, protein_key, sheet[str(protein_id), protein_key]])
>>>
>>> sheet2 = p.get_sheet(array=results)
>>> sheet2.colnames = ['protein_id', 'protein_key', 'value_of_key']
>>> print(sheet2)
pyexcel_sheet1:
+------------+-------------+--------------+
| protein_id | protein_key | value_of_key |
+============+=============+==============+
| a001 | 123442 | 6 |
+------------+-------------+--------------+
| a001 | 234335 | 0 |
+------------+-------------+--------------+
| a001 | 234336 | 0 |
+------------+-------------+--------------+
| a001 | 3549867 | 8 |
+------------+-------------+--------------+
| b001 | 123442 | 4 |
+------------+-------------+--------------+
| b001 | 234335 | 2 |
+------------+-------------+--------------+
| b001 | 234336 | 0 |
+------------+-------------+--------------+
| b001 | 3549867 | 0 |
+------------+-------------+--------------+
| c003 | 123442 | 0 |
+------------+-------------+--------------+
| c003 | 234335 | 0 |
+------------+-------------+--------------+
| c003 | 234336 | 0 |
+------------+-------------+--------------+
| c003 | 3549867 | 5 |
+------------+-------------+--------------+
>>> sheet2.save_to_database(session=Session(), table=Proteins)

Here is the data inserted:

$ sqlite3 /tmp/stack2.db
sqlite> select * from allproteins

...> ;
|a001|123442|6
|a001|234335|0
|a001|234336|0
|a001|3549867|8
|b001|123442|4
|b001|234335|2
|b001|234336|0
|b001|234336|0
|c003|123442|0
|c003|234335|0
|c003|234336|0

(continues on next page)

86 Chapter 2. Support the project



pyexcel, Release 0.5.15

(continued from previous page)

|c003|3549867|5

2.8 API documentation

2.8.1 API Reference

This is intended for users of pyexcel.

Signature functions

Obtaining data from excel file

Saving data to excel file

These flags can be passed on all signature functions:

auto_detect_int

Automatically convert float values to integers if the float number has no decimal values(e.g. 1.00). By default, it does
the detection. Setting it to False will turn on this behavior

It has no effect on pyexcel-xlsx because it does that by default.

auto_detect_float

Automatically convert text to float values if possible. This applies only pyexcel-io where csv, tsv, csvz and tsvz formats
are supported. By default, it does the detection. Setting it to False will turn on this behavior

auto_detect_datetime

Automatically convert text to python datetime if possible. This applies only pyexcel-io where csv, tsv, csvz and tsvz
formats are supported. By default, it does the detection. Setting it to False will turn on this behavior

library

Name a pyexcel plugin to handle a file format. In the situation where multiple plugins were pip installed, it is confusing
for pyexcel on which plugin to handle the file format. For example, both pyexcel-xlsx and pyexcel-xls reads xlsx
format. Now since version 0.2.2, you can pass on library=”pyexcel-xls” to handle xlsx in a specific function call.

It is better to uninstall the unwanted pyexcel plugin using pip if two plugins for the same file type are not absolutely
necessary.

2.8. API documentation 87



pyexcel, Release 0.5.15

Cookbook

Book

Here’s the entity relationship between Book, Sheet, Row and Column

Constructor

Attribute

Conversions

Save changes

Sheet

Constructor

Attributes

Iteration

88 Chapter 2. Support the project



pyexcel, Release 0.5.15

Cell access

Row access

Column access

Data series

Any column as row name

Any row as column name

Conversion

Formatting

Filtering

Transformation

Save changes

2.8.2 Internal API reference

This is intended for developers and hackers of pyexcel.

Data sheet representation

In inheritance order from parent to child

Row representation

Column representation

2.9 Developer’s guide

2.9.1 Developer’s guide

Development steps for code changes

1. git clone https://github.com/pyexcel/pyexcel.git

2. cd pyexcel

Upgrade your setup tools and pip. They are needed for development and testing only:

1. pip install –upgrade setuptools pip

Then install relevant development requirements:

2.9. Developer’s guide 89

https://github.com/pyexcel/pyexcel.git


pyexcel, Release 0.5.15

1. pip install -r rnd_requirements.txt # if such a file exists

2. pip install -r requirements.txt

3. pip install -r tests/requirements.txt

Once you have finished your changes, please provide test case(s), relevant documentation and update
CHANGELOG.rst.

Note: As to rnd_requirements.txt, usually, it is created when a dependent library is not released. Once the dependecy
is installed (will be released), the future version of the dependency in the requirements.txt will be valid.

How to test your contribution

Although nose and doctest are both used in code testing, it is adviable that unit tests are put in tests. doctest is incor-
porated only to make sure the code examples in documentation remain valid across different development releases.

On Linux/Unix systems, please launch your tests like this:

$ make

On Windows systems, please issue this command:

> test.bat

How to update test environment and update documentation

Additional steps are required:

1. pip install moban

2. git clone https://github.com/moremoban/setupmobans.git # generic setup

3. git clone https://github.com/pyexcel/pyexcel-commons.git commons

4. make your changes in .moban.d directory, then issue command moban

What is pyexcel-commons

Many information that are shared across pyexcel projects, such as: this developer guide, license info, etc. are stored
in pyexcel-commons project.

What is .moban.d

.moban.d stores the specific meta data for the library.

Acceptance criteria

1. Has Test cases written

2. Has all code lines tested

3. Passes all Travis CI builds

4. Has fair amount of documentation if your change is complex

90 Chapter 2. Support the project

https://github.com/moremoban/setupmobans.git
https://github.com/pyexcel/pyexcel-commons.git


pyexcel, Release 0.5.15

5. run ‘make format’ so as to confirm the pyexcel organisation’s coding style

6. Please update CHANGELOG.rst

7. Please add yourself to CONTRIBUTORS.rst

8. Agree on NEW BSD License for your contribution

2.9.2 How to log pyexcel

When developing source plugins, it becomes necessary to have log trace available. It helps find out what goes wrong
quickly.

The basic step would be to set up logging before pyexcel import statement.

import logging
import logging.config
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

level=logging.DEBUG)

import pyexcel

And if you would use a complex configuration, you can use the following code.

import logging
import logging.config
logging.config.fileConfig('log.conf')

import pyexcel

And then save the following content as log.conf in your directory:

[loggers]
keys=root, sources, renderers

[handlers]
keys=consoleHandler

[formatters]
keys=custom

[logger_root]
level=INFO
handlers=consoleHandler

[logger_sources]
level=DEBUG
handlers=consoleHandler
qualname=pyexcel.sources.factory
propagate=0

[logger_renderers]
level=DEBUG
handlers=consoleHandler
qualname=pyexcel.renderers.factory
propagate=0

[handler_consoleHandler]

(continues on next page)

2.9. Developer’s guide 91



pyexcel, Release 0.5.15

(continued from previous page)

class=StreamHandler
level=DEBUG
formatter=custom
args=(sys.stdout,)

[formatter_custom]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=

Disable logging
-------------------

In unit testing and django framework, you will find the `lml` logging even you have
→˓not
explicitly wanted them.

You can suppress them:

import logging
logging.getLogger('lml.plugin').propagate = False

Here is a list of possible modules: `lml.plugin` and `lml.loader`.

2.9.3 Packaging with PyInstaller

With pyexcel v0.5.0, the way to package it has been changed because it uses lml for all plugins.

And you need to do the same for pyexcel-io plugins too.

Built-in plugins of pyexcel

In order to package every built-in plugins of pyexcel-io, you need to specify:

--hidden-import pyexcel.plugins.renderers.sqlalchemy
--hidden-import pyexcel.plugins.renderers.django
--hidden-import pyexcel.plugins.renderers.excel
--hidden-import pyexcel.plugins.renderers._texttable
--hidden-import pyexcel.plugins.parsers.excel
--hidden-import pyexcel.plugins.parsers.sqlalchemy
--hidden-import pyexcel.plugins.sources.http
--hidden-import pyexcel.plugins.sources.file_input
--hidden-import pyexcel.plugins.sources.memory_input
--hidden-import pyexcel.plugins.sources.file_output
--hidden-import pyexcel.plugins.sources.output_to_memory
--hidden-import pyexcel.plugins.sources.pydata.bookdict
--hidden-import pyexcel.plugins.sources.pydata.dictsource
--hidden-import pyexcel.plugins.sources.pydata.arraysource
--hidden-import pyexcel.plugins.sources.pydata.records
--hidden-import pyexcel.plugins.sources.django
--hidden-import pyexcel.plugins.sources.sqlalchemy
--hidden-import pyexcel.plugins.sources.querysets

92 Chapter 2. Support the project

http://pyexcel-io.readthedocs.io/en/latest/pyinstaller.html


pyexcel, Release 0.5.15

2.9.4 How to write a plugin for pyexcel

Note: Under writing. Stay tuned.

There are three types of plugins for pyexcel: data parser, data renderer and data source.

Tutorial

Let me walk you through the process of creating pyexcel-pdfr package.

Prerequisites:

1. pip install moban yehua

2. git clone https://github.com/moremoban/setupmobans.git # generic setup

3. git clone https://github.com/pyexcel/pyexcel-commons.git

Let me assume that you have the work directory as:

setupmobans pyexcel-commons

and YOUR_WORK_DIRECTORY points to the base directory for both.

And then please export an environment variable:

export YEHUA_FILE=$YOUR_WORK_DIRECTORY/pyexcel-commons/yehua/yehua.yml

Now let’s get started.

Step 1

Call yehua to get the basic scaffolding:

$ yehua
Yehua will walk you through creating a pyexcel package.
Press ^C to quit at any time.

What is your project name? pyexcel-pdfr
What is the description? parses tables in pdf file as tabular data
What is project type?
1. pyexcel plugins
2. command line interface
3. python's C externsion
(1,2,3): 1
What is the nick name? pdf
$

Step 2

Call moban to inflate all project files:

2.9. Developer’s guide 93

https://github.com/moremoban/setupmobans.git
https://github.com/pyexcel/pyexcel-commons.git


pyexcel, Release 0.5.15

$ cd pyexcel-pdfr/
$ ln -s ../pyexcel-commons/ commons
$ ln -s ../setupmobans/ setupmobans
$ moban
Templating README.rst to README.rst
Templating setup.py to setup.py
Templating requirements.txt to requirements.txt
Templating NEW_BSD_LICENSE.jj2 to LICENSE
Templating MANIFEST.in.jj2 to MANIFEST.in
Templating tests/requirements.txt to tests/requirements.txt
Templating test.script.jj2 to test.sh
Templating test.script.jj2 to test.bat
Templating travis.yml.jj2 to .travis.yml
Templating gitignore.jj2 to .gitignore
Templating docs/source/conf.py.jj2 to docs/source/conf.py

Step 3 - Coding

Please put your code in pyexcel_pdfr

2.10 Change log

2.10.1 What’s breaking in 0.5.9

pyexcel.Sheet.to_records() returns a generator instead of a list of dictionaries.

2.10.2 Migrate away from 0.4.3

get_{{file_type}}_stream functions from pyexcel.Sheet and pyexcel.Book were introduced since 0.4.3 but
were removed since 0.4.4. Please be advised to use save_to_memory functions, Sheet.io.{{file_type}} or
Book.io.{{file_type}}.

2.10.3 Migrate from 0.2.x to 0.3.0+

Filtering and formatting behavior of pyexcel.Sheet are simplified. Soft filter and soft formatter are removed.
Extra classes such as iterator, formatter, filter are removed.

Most of formatting tasks could be achieved using format() and map(). and Filtering with filter(). Formatting
and filtering on row and/or column can be found with row() and column()

1. Updated filter function

There is no alternative to replace the following code:

sheet.filter(pe.OddRowFilter())

You will need to remove odd rows by yourself:

94 Chapter 2. Support the project



pyexcel, Release 0.5.15

>>> import pyexcel as pe
>>> data = [
... ['1'],
... ['2'],
... ['3'],
... ]
>>> sheet = pe.Sheet(data)
>>> to_remove = []
>>> for index in sheet.row_range():
... if index % 2 == 0:
... to_remove.append(index)
>>> sheet.filter(row_indices=to_remove)
>>> sheet
pyexcel sheet:
+---+
| 2 |
+---+

Or, you could do this:

>>> data = [
... ['1'],
... ['2'],
... ['3'],
... ]
>>> sheet = pe.Sheet(data)
>>> def odd_filter(row_index, _):
... return row_index % 2 == 0
>>> del sheet.row[odd_filter]
>>> sheet
pyexcel sheet:
+---+
| 2 |
+---+

And the same applies to EvenRowFilter, OddColumnFilter, EvenColumnFilter.

2. Updated format function

2.1 Replacement of sheetformatter

The following formatting code:

sheet.apply_formatter(pe.sheets.formatters.SheetFormatter(int))

can be replaced by:

sheet.format(int)

2.2 Replacement of row formatters

The following code:

2.10. Change log 95



pyexcel, Release 0.5.15

row_formatter = pe.sheets.formatters.RowFormatter([1, 2], str)
sheet.add_formatter(row_formatter)

can be replaced by:

sheet.row.format([1, 2], str)

2.3 Replacement of column formatters

The following code:

f = NamedColumnFormatter(["Column 1", "Column 3"], str)
sheet.apply_formatter(f)

can be replaced by:

sheet.column.format(["Column 1", "Column 3"], str)

2.10.4 Migrate from 0.2.1 to 0.2.2+

1. Explicit imports, no longer needed

Please forget about these statements:

import pyexcel.ext.xls
import pyexcel.ext.ods
import pyexcel.ext.xlsx

They are no longer needed. As long as you have pip-installed them, they will be auto-loaded. However, if you do not
want some of the plugins, please use pip to uninstall them.

What if you have your code as it is? No harm but a few warnings shown:

Deprecated usage since v0.2.2! Explicit import is no longer required. pyexcel.ext.ods
→˓is auto imported.

2. Invalid environment marker: platform_python_implementation==”PyPy”

Yes, it is a surprise. Please upgrade setuptools in your environment:

pip install --upgrade setuptools

At the time of writing, setuptools (18.0.1) or setuptools-21.0.0-py2.py3-none-any.whl is installed on author’s computer
and worked.

3. How to keep both pyexcel-xls and pyexcel-xlsx

As in Issue 20, pyexcel-xls was used for xls and pyexcel-xlsx had to be used for xlsx. Both must co-exist due to
requirements. The workaround would failed when auto-import are enabled in v0.2.2. Hence, user of pyexcel in this
situation shall use ‘library’ parameter to all signature functions, to instruct pyexcel to use a named library for each
function call.

96 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/20


pyexcel, Release 0.5.15

4. pyexcel.get_io is no longer exposed

pyexcel.get_io was passed on from pyexcel-io. However, it is no longer exposed. Please use pyex-
cel_io.manager.RWManager.get_io if you have to.

You are likely to use pyexcel.get_io when you do pyexcel.Sheet.save_to_memory() or pyexcel.Book.
save_to_memory() where you need to put in a io stream. But actually, with latest code, you could put in a
None.

2.10.5 Migrate from 0.1.x to 0.2.x

1. “Writer” is gone, Please use save_as.

Here is a piece of legacy code:

w = pyexcel.Writer("afile.csv")
data=[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 1.1, 1]]
w.write_array(table)
w.close()

The new code is:

>>> data=[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 1.1, 1]]
>>> pyexcel.save_as(array=data, dest_file_name="afile.csv")

Here is another piece of legacy code:

content = {
"X": [1,2,3,4,5],
"Y": [6,7,8,9,10],
"Z": [11,12,13,14,15],

}
w = pyexcel.Writer("afile.csv")
w.write_dict(self.content)
w.close()

The new code is:

>>> content = {
... "X": [1,2,3,4,5],
... "Y": [6,7,8,9,10],
... "Z": [11,12,13,14,15],
... }
>>> pyexcel.save_as(adict=content, dest_file_name="afile.csv")

Here is yet another piece of legacy code:

data = [
[1, 2, 3],
[4, 5, 6]

]
io = StringIO()
w = pyexcel.Writer(("csv",io))
w.write_rows(data)
w.close()

The new code is:

2.10. Change log 97



pyexcel, Release 0.5.15

>>> data = [
... [1, 2, 3],
... [4, 5, 6]
... ]
>>> io = pyexcel.save_as(dest_file_type='csv', array=data)
>>> for line in io.readlines():
... print(line.rstrip())
1,2,3
4,5,6

2. “BookWriter” is gone. Please use save_book_as.

Here is a piece of legacy code:

import pyexcel
content = {

"Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]],
"Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]],
"Sheet3": [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]

}
w = pyexcel.BookWriter("afile.csv")
w.write_book_from_dict(content)
w.close()

The replacement code is:

>>> import pyexcel
>>> content = {
... "Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]],
... "Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]],
... "Sheet3": [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]
... }
>>> pyexcel.save_book_as(bookdict=content, dest_file_name="afile.csv")

2.10.6 Change log

0.5.15 - 07.07.2019

updated

1. #185: fix a bug with http data source. The real fix lies in pyexcel-io v0.5.19. this release just put the version
requirement in.

0.5.14 - 12.06.2019

updated

1. #182: support dest_force_file_type on save_as and save_book_as

98 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/185
https://github.com/pyexcel/pyexcel/issues/182


pyexcel, Release 0.5.15

0.5.13 - 12.03.2019

updated

1. #176: get_sheet {IndexError}list index out of range // XLSX can’t be opened

0.5.12 - 25.02.2019

updated

1. #174: include examples in tarbar

0.5.11 - 22.02.2019

updated

1. #169: remove pyexcel-handsontalbe in test

2. add tests, and docs folder in distribution

0.5.10 - 3.12.2018

updated

1. #157: Please use scan_plugins_regex, which lml 0.7 complains about

2. updated dependency on pyexcel-io to 0.5.11

0.5.9.1 - 30.08.2018

updated

1. to require pyexcel-io 0.5.9.1 and use lml at least version 0.0.2

0.5.9 - 30.08.2018

added

1. support __len__. len(book) returns the number of sheets and len(sheet) returns the number of rows

2. #144: memory-efficient way to read sheet names.

3. #148: force_file_type is introduced. When reading a file on a disk, this parameter allows you to choose a reader.
i.e. csv reader for a text file. xlsx reader for a xlsx file but with .blob file suffix.

4. finally, pyexcel got import pyexcel.__version__

2.10. Change log 99

https://github.com/pyexcel/pyexcel/issues/176
https://github.com/pyexcel/pyexcel/issues/174
https://github.com/pyexcel/pyexcel/issues/169
https://github.com/pyexcel/pyexcel/issues/157
https://github.com/pyexcel/pyexcel/issues/144
https://github.com/pyexcel/pyexcel/issues/148


pyexcel, Release 0.5.15

updated

1. Sheet.to_records() returns a generator now, saving memory

2. #115, Fix set membership test to run faster in python2

3. #140, Direct writes to cells yield weird results

0.5.8 - unreleased

added

1. #125, sort book sheets

updated

1. #126, dest_sheet_name in save_as will set the sheet name in the output

2. #115, Fix set membership test to run faster in python2

0.5.7 - 11.01.2018

added

1. pyexcel-io#46, expose bulk_save to developer.

0.5.6 - 23.10.2017

removed

1. #105, remove gease from setup_requires, introduced by 0.5.5.

2. removed testing against python 2.6

3. #103, include LICENSE file in MANIFEST.in, meaning LICENSE file will appear in the released tar ball.

0.5.5 - 20.10.2017

removed

1. #105, remove gease from setup_requires, introduced by 0.5.5.

2. removed testing against python 2.6

3. #103, include LICENSE file in MANIFEST.in, meaning LICENSE file will appear in the released tar ball.

0.5.4 - 27.09.2017

fixed

1. #100, Sheet.to_dict() gets out of range error because there is only one row.

100 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/115
https://github.com/pyexcel/pyexcel/issues/140
https://github.com/pyexcel/pyexcel/issues/125
https://github.com/pyexcel/pyexcel/issues/126
https://github.com/pyexcel/pyexcel/issues/115
https://github.com/pyexcel/pyexcel-io/issues/46
https://github.com/pyexcel/pyexcel/issues/105
https://github.com/pyexcel/pyexcel/issues/103
https://github.com/pyexcel/pyexcel/issues/105
https://github.com/pyexcel/pyexcel/issues/103
https://github.com/pyexcel/pyexcel/issues/100


pyexcel, Release 0.5.15

updated

1. Updated the baseline of pyexcel-io to 0.5.1.

0.5.3 - 01-08-2017

added

1. #95, respect the order of records in iget_records, isave_as and save_as.

2. #97, new feature to allow intuitive initialization of pyexcel.Book.

0.5.2 - 26-07-2017

Updated

1. embeded the enabler for pyexcel-htmlr. http source does not support text/html as mime type.

0.5.1 - 12.06.2017

Updated

1. support saving SheetStream and BookStream to database targets. This is needed for pyexcel-webio and its
downstream projects.

0.5.0 - 19.06.2017

Added

1. Sheet.top() and Sheet.top_left() for data browsing

2. add html as default rich display in Jupyter notebook when pyexcel-text and pyexcel-chart is installed

3. add svg as default rich display in Jupyter notebook when pyexcel-chart and one of its implementation
plugin(pyexcel-pygal, etc.) are is installed

4. new dictionary source supported: a dictionary of key value pair could be read into a sheet.

5. added dynamic external plugin loading. meaning if a pyexcel plugin is installed, it will be loaded implicitly.
And this change would remove unnecessary info log for those who do not use pyexcel-text and pyexcel-gal

6. save_book_as before 0.5.0 becomes isave_book_as and save_book_as in 0.5.0 convert BookStream to Book
before saving.

7. #83, file closing mechanism is enfored. free_resource is added and it should be called when iget_array,
iget_records, isave_as and/or isave_book_as are used.

Updated

1. array is passed to pyexcel.Sheet as reference. it means your array data will be modified.

2.10. Change log 101

https://github.com/pyexcel/pyexcel/issues/95
https://github.com/pyexcel/pyexcel/issues/97
https://github.com/pyexcel/pyexcel/issues/83


pyexcel, Release 0.5.15

Removed

1. pyexcel.Writer and pyexcel.BookWriter were removed

2. pyexcel.load_book_from_sql and pyexcel.load_from_sql were removed

3. pyexcel.deprecated.load_from_query_sets, pyexcel.deprecated.load_book_from_django_models and pyex-
cel.deprecated.load_from_django_model were removed

4. Removed plugin loading code and lml is used instead

0.4.5 - 17.03.2017

Updated

1. #80: remove pyexcel-chart import from v0.4.x

0.4.4 - 06.02.2017

Updated

1. #68: regression save_to_memory() should have returned a stream instance which has been reset to zero if
possible. The exception is sys.stdout, which cannot be reset.

2. #74: Not able to handle decimal.Decimal

Removed

1. remove get_{{file_type}}_stream functions from pyexcel.Sheet and pyexcel.Book introduced since 0.4.3.

0.4.3 - 26.01.2017

Added

1. ‘.stream’ attribute are attached to ~pyexcel.Sheet and ~pyexcel.Book to get direct access the underneath stream
in responding to file type attributes, such as sheet.xls. it helps provide a custom stream to external world, for
example, Sheet.stream.csv gives a text stream that contains csv formatted data. Book.stream.xls returns a xls
format data in a byte stream.

Updated

1. Better error reporting when an unknown parameters or unsupported file types were given to the signature func-
tions.

0.4.2 - 17.01.2017

102 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/80
https://github.com/pyexcel/pyexcel/issues/68
https://github.com/pyexcel/pyexcel/issues/74


pyexcel, Release 0.5.15

Updated

1. Raise exception if the incoming sheet does not have column names. In other words, only sheet with column
names could be saved to database. sheet with row names cannot be saved. The alternative is to transpose the
sheet, then name_columns_by_row and then save.

2. fix iget_records where a non-uniform content should be given, e.g. [[“x”, “y”], [1, 2], [3]], some record would
become non-uniform, e.g. key ‘y’ would be missing from the second record.

3. skip_empty_rows is applicable when saving a python data structure to another data source. For example,
if your array contains a row which is consisted of empty string, such as [‘’, ‘’, ‘’ . . . ‘’], please specify
skip_empty_rows=False in order to preserve it. This becomes subtle when you try save a python dictionary
where empty rows is not easy to be spotted.

4. #69: better documentation for save_book_as.

0.4.1 - 23.12.2016

Updated

1. #68: regression save_to_memory() should have returned a stream instance.

0.4.0 - 22.12.2016

Added

1. Flask-Excel#19 allow sheet_name parameter

2. pyexcel-xls#11 case-insensitive for file_type. xls and XLS are treated in the same way

Updated

1. #66: export_columns is ignored

2. Update dependency on pyexcel-io v0.3.0

0.3.3 - 07.11.2016

Updated

1. #63: cannot display empty sheet(hence book with empty sheet) as texttable

0.3.2 - 02.11.2016

Updated

1. #62: optional module import error become visible.

2.10. Change log 103

https://github.com/pyexcel/pyexcel/issues/69
https://github.com/pyexcel/pyexcel/issues/68
https://github.com/pyexcel/Flask-Excel/issues/19
https://github.com/pyexcel/pyexcel-xls/issues/11
https://github.com/pyexcel/pyexcel/issues/66
https://github.com/pyexcel/pyexcel/issues/63
https://github.com/pyexcel/pyexcel/issues/62


pyexcel, Release 0.5.15

0.3.0 - 28.10.2016

Added:

1. file type setters for Sheet and Book, and its documentation

2. iget_records returns a generator for a list of records and should have better memory performance, especially
dealing with large csv files.

3. iget_array returns a generator for a list of two dimensional array and should have better memory performance,
especially dealing with large csv files.

4. Enable pagination support, and custom row renderer via pyexcel-io v0.2.3

Updated

1. Take isave_as out from save_as. Hence two functions are there for save a sheet as

2. #60: encode ‘utf-8’ if the console is of ascii encoding.

3. #59: custom row renderer

4. #56: set cell value does not work

5. pyexcel.transpose becomes pyexcel.sheets.transpose

6. iterator functions of pyexcel.Sheet were converted to generator functions

• pyexcel.Sheet.enumerate()

• pyexcel.Sheet.reverse()

• pyexcel.Sheet.vertical()

• pyexcel.Sheet.rvertical()

• pyexcel.Sheet.rows()

• pyexcel.Sheet.rrows()

• pyexcel.Sheet.columns()

• pyexcel.Sheet.rcolumns()

• pyexcel.Sheet.named_rows()

• pyexcel.Sheet.named_columns()

7. ~pyexcel.Sheet.save_to_memory and ~pyexcel.Book.save_to_memory return the actual content. No longer they
will return a io object hence you cannot call getvalue() on them.

Removed:

1. content and out_file as function parameters to the signature functions are no longer supported.

2. SourceFactory and RendererFactory are removed

3. The following methods are removed

• pyexcel.to_array

• pyexcel.to_dict

• pyexcel.utils.to_one_dimensional_array

104 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/60
https://github.com/pyexcel/pyexcel/issues/59
https://github.com/pyexcel/pyexcel/issues/56


pyexcel, Release 0.5.15

• pyexcel.dict_to_array

• pyexcel.from_records

• pyexcel.to_records

4. pyexcel.Sheet.filter has been re-implemented and all filters were removed:

• pyexcel.filters.ColumnIndexFilter

• pyexcel.filters.ColumnFilter

• pyexcel.filters.RowFilter

• pyexcel.filters.EvenColumnFilter

• pyexcel.filters.OddColumnFilter

• pyexcel.filters.EvenRowFilter

• pyexcel.filters.OddRowFilter

• pyexcel.filters.RowIndexFilter

• pyexcel.filters.SingleColumnFilter

• pyexcel.filters.RowValueFilter

• pyexcel.filters.NamedRowValueFilter

• pyexcel.filters.ColumnValueFilter

• pyexcel.filters.NamedColumnValueFilter

• pyexcel.filters.SingleRowFilter

5. the following functions have been removed

• add_formatter

• remove_formatter

• clear_formatters

• freeze_formatters

• add_filter

• remove_filter

• clear_filters

• freeze_formatters

6. pyexcel.Sheet.filter has been re-implemented and all filters were removed:

• pyexcel.formatters.SheetFormatter

0.2.5 - 31.08.2016

Updated:

1. #58: texttable should have been made as compulsory requirement

2.10. Change log 105

https://github.com/pyexcel/pyexcel/issues/58


pyexcel, Release 0.5.15

0.2.4 - 14.07.2016

Updated:

1. For python 2, writing to sys.stdout by pyexcel-cli raise IOError.

0.2.3 - 11.07.2016

Updated:

1. For python 3, do not seek 0 when saving to memory if sys.stdout is passed on. Hence, adding support for
sys.stdin and sys.stdout.

0.2.2 - 01.06.2016

Updated:

1. Explicit imports, no longer needed

2. Depends on latest setuptools 18.0.1

3. NotImplementedError will be raised if parameters to core functions are not supported, e.g.
get_sheet(cannot_find_me_option=”will be thrown out as NotImplementedError”)

0.2.1 - 23.04.2016

Added:

1. add pyexcel-text file types as attributes of pyexcel.Sheet and pyexcel.Book, related to #31

2. auto import pyexcel-text if it is pip installed

Updated:

1. code refactoring done for easy addition of sources.

2. bug fix #29, Even if the format is a string it is displayed as a float

3. pyexcel-text is no longer a plugin to pyexcel-io but to pyexcel.sources, see pyexcel-text#22

Removed:

1. pyexcel.presentation is removed. No longer the internal decorate @outsource is used. related to #31

0.2.0 - 17.01.2016

Updated

1. adopt pyexcel-io yield key word to return generator as content

2. pyexcel.save_as and pyexcel.save_book_as get performance improvements

106 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/31
https://github.com/pyexcel/pyexcel/issues/29
https://github.com/pyexcel/pyexcel-text/issues/22
https://github.com/pyexcel/pyexcel/issues/31


pyexcel, Release 0.5.15

0.1.7 - 03.07.2015

Added

1. Support pyramid-excel which does the database commit on its own.

0.1.6 - 13.06.2015

Added

1. get excel data from a http url

0.0.13 - 07.02.2015

Added

1. Support django

2. texttable as default renderer

0.0.12 - 25.01.2015

Added

1. Added sqlalchemy support

0.0.10 - 15.12.2015

Added

1. added csvz and tsvz format

0.0.4 - 12.10.2014

Updated

1. Support python 3

0.0.1 - 14.09.2014

Features:

1. read and write csv, ods, xls, xlsx and xlsm files(which are referred later as excel files)

2. various iterators for the reader

3. row and column filters for the reader

4. utilities to get array and dictionary out from excel files.

2.10. Change log 107



pyexcel, Release 0.5.15

5. cookbok receipes for some common and simple usage of this library.

2.10.7 Note on pypy and lxml

When executing the unit tests on pypy3, it’s found that lxml 4.0.0 works well on pypy3. lxml 3.6.4 works well on
pypy2.

108 Chapter 2. Support the project



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

109



pyexcel, Release 0.5.15

110 Chapter 3. Indices and tables



Bibliography

[f1] quoted from whatis.com. Technical details can be found at MSDN XLS

[f2] xlsx is used by MS-Excel 2007, more information can be found at MSDN XLSX

111

http://whatis.techtarget.com/fileformat/XLS-Worksheet-file-Microsoft-Excel
https://msdn.microsoft.com/en-us/library/office/gg615597(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/dd922181(v=office.12).aspx

	Introduction
	Support the project
	Installation
	Usage
	Design
	New tutorial
	Old tutorial
	Cook book
	Real world cases
	API documentation
	Developer’s guide
	Change log

	Indices and tables
	Bibliography

