

pyexcel - Let you focus on data, instead of file formats

	Author:	C.W.

	Source code:	http://github.com/pyexcel/pyexcel.git

	Issues:	http://github.com/pyexcel/pyexcel/issues

	License:	New BSD License

	Development:	0.4.5

	Released:	0.4.4

	Generated:	Apr 19, 2017

Introduction

pyexcel provides one application programming interface to read,
manipulate and write data in different excel formats. This library makes
information processing involving excel files an enjoyable task. The data in
excel files can be turned into array or dict
with least code, vice versa. This library focuses on data
processing using excel files as storage media hence fonts, colors and charts
were not and will not be considered.

The idea originated from the common usability problem when developing an excel file
driven web applications for non-technical office workers: such as office assistant,
human resource administrator. The fact is that not all people know the
difference among various excel formats: csv, xls, xlsx. Instead of training those people
about file formats, this library helps web developers to handle most of the excel file
formats by providing a common programming interface. To add a specific excel file format
to you application, all you need is to install an extra pyexcel plugin. No code change
to your application. Looking at the community, this library and its associated ones try
to become a small and easy to install alternative to Pandas.

Note

Since version 0.2.2, no longer a plugin should be explicitly imported.
They are imported if they are installed. Please use pip to manage the
plugins.

Installation

You can install it via pip:

$ pip install pyexcel

or clone it and install it:

$ git clone http://github.com/pyexcel/pyexcel.git
$ cd pyexcel
$ python setup.py install

For individual excel file formats, please install them as you wish:

A list of file formats supported by external plugins

	Package name
	Supported file formats
	Dependencies
	Python versions

	pyexcel-io [https://github.com/pyexcel/pyexcel-io]
	csv, csvz [1], tsv,
tsvz [2]
	
	2.6, 2.7, 3.3,
3.4, 3.5, 3.6
pypy

	pyexcel-xls [https://github.com/pyexcel/pyexcel-xls]
	xls, xlsx(read only),
xlsm(read only)
	xlrd [https://github.com/python-excel/xlrd],
xlwt [https://github.com/python-excel/xlwt]
	same as above

	pyexcel-xlsx [https://github.com/pyexcel/pyexcel-xlsx]
	xlsx
	openpyxl [https://bitbucket.org/openpyxl/openpyxl]
	same as above

	pyexcel-xlsxw [https://github.com/pyexcel/pyexcel-xlsxw]
	xlsx(write only)
	XlsxWriter [https://github.com/jmcnamara/XlsxWriter]
	same as above

	pyexcel-ods3 [https://github.com/pyexcel/pyexcel-ods3]
	ods
	ezodf [https://github.com/T0ha/ezodf],
lxml
	2.6, 2.7, 3.3, 3.4
3.5, 3.6

	pyexcel-ods [https://github.com/pyexcel/pyexcel-ods]
	ods
	odfpy [https://github.com/eea/odfpy]
	same as above

	pyexcel-odsr [https://github.com/pyexcel/pyexcel-odsr]
	ods(read only)
	lxml
	same as above

	pyexcel-text [https://github.com/pyexcel/pyexcel-text]
	(write only)json, rst,
mediawiki, html,
latex, grid, pipe,
orgtbl, plain simple
	tabulate [https://bitbucket.org/astanin/python-tabulate]
	2.6, 2.7, 3.3, 3.4
3.5, pypy, pypy3

Footnotes

	[1]	zipped csv file

	[2]	zipped tsv file

For compatibility tables of pyexcel-io plugins, please click here [http://pyexcel-io.readthedocs.io/en/latest/#id5]

Plugin compatibility table

	pyexcel
	pyexcel-io
	pyexcel-text

	0.4.0+
	0.3.0
	0.2.5

	0.3.0+
	0.2.3
	0.2.4

	0.2.2+
	0.2.0+
	0.2.1+

	0.2.1
	0.1.0
	0.2.0

	0.2.0
	0.1.0
	0.1.0+

Usage

Suppose you want to process the following excel data :

	Name
	Age

	Adam
	28

	Beatrice
	29

	Ceri
	30

	Dean
	26

Here are the example usages:

>>> import pyexcel as pe
>>> records = pe.iget_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26

Design

	Introduction
	Data models and data structures

	Data source

	Data format

	Data transformation

	Data manipulations

	Data transcoding

	Signature functions
	Import data into Python
	Four data access functions

	Two native functions

	Export data from Python

	Data transportation/transcoding

Tutorial

	Work with excel files
	Add a new row to an existing file

	Update an existing row to an existing file

	Add a new column to an existing file

	Update an existing column to an existing file

	Work with excel files in memory
	file type as its attributes

	Read any supported excel and respond its content in json

	Write to memory and respond to download
	Relevant packages

	Sheet: Data conversion
	How to obtain records from an excel sheet

	How to get an array from an excel sheet

	How to save an python array as an excel file

	How to save an python array as a csv file with special delimiter

	How to get a dictionary from an excel sheet

	How to obtain a dictionary from a multiple sheet book

	How to save a dictionary of two dimensional array as an excel file

	How to an excel sheet to a database using SQLAlchemy

	How to open an xls file and save it as csv

	How to open an xls file and save it as xlsx

	How to open a xls multiple sheet excel book and save it as csv

	Dot notation for data source
	For sheet
	Get content

	Set content

	For book
	Get content

	Set content

	Getters and Setters

	Work with big data sheet
	Pagination

	Formatting while transcoding a big data file

	Sheet: Data Access
	Random access to individual cell

	Random access to rows and columns

	Use custom names instead of index

	Reading a single sheet excel file
	Read the sheet as a dictionary

	Can I get an array of dictionaries per each row?

	Writing a single sheet excel file

	Write multiple sheet excel file

	Read multiple sheet excel file

	Work with data series in a single sheet
	Play with data

	Sheet: Data manipulation
	Column manipulation
	Remove one column of a data file

	Append more columns to a data file
	Cherry pick some columns to be removed

	What if the headers are in a different row

	Row manipulation

	Sheet: Data filtering
	Filter out some data
	Save the data

	How to filter out empty rows in my sheet?

	Sheet: Formatting
	Convert a column of numbers to strings

	Cleanse the cells in a spread sheet

	Book: Sheet operations
	Access to individual sheets

	Merge excel books

	Manipulate individual sheets
	merge sheets into a single sheet

	How do I read a book, process it and save to a new book

	What would happen if I save a multi sheet book into “csv” file

	After I have saved my multiple sheet book in csv format, how do I get them back

	How to log pyexcel

	Migrate away from 0.4.3

	Migrate from 0.2.x to 0.3.0+
	1. Updated filter function

	2. Updated format function
	2.1 Replacement of sheetformatter

	2.2 Repalcement of row formatters

	2.3 Replacement of column formatters

	Migrate from 0.2.1 to 0.2.2+
	1. Explicit imports, no longer needed

	2. Invalid environment marker: platform_python_implementation==”PyPy”

	3. How to keep both pyexcel-xls and pyexcel-xlsx

	4. pyexcel.get_io is no longer exposed

	Migrate from 0.1.x to 0.2.x
	1. “Writer” is gone, Please use save_as.

	2. “BookWriter” is gone. Please use save_book_as.

Cook book

	Recipes
	Update one column of a data file

	Update one row of a data file

	Merge two files into one

	Select candidate columns of two files and form a new one

	Merge two files into a book where each file become a sheet

	Merge all excel files in directory into a book where each file become a sheet

	Split a book into single sheet files

	Extract just one sheet from a book

	Loading from other sources
	How to load a sheet from a url

Real world cases

	Questions and Answers

API documentation

	API Reference
	Signature functions

	Cookbook

	Book

	Sheet

	Internal API reference
	Data sheet representation

	Row representation

	Column representation

Developer’s guide

	Developer’s guide
	What is rnd_requirements.txt

	What is pyexcel-commons

	What is .moban.d

	How to test your contribution

	Acceptance criteria

Change log

	Change log
	0.4.5 - 17.03.2017

	0.4.4 - 06.02.2016

	0.4.3 - 26.01.2017

	0.4.2 - 17.01.2017

	0.4.1 - 23.12.2016

	0.4.0 - 22.12.2016

	0.3.3 - 07.11.2016

	0.3.2 - 02.11.2016

	0.3.0 - 28.10.2016

	0.2.5 - 31.08.2016

	0.2.4 - 14.07.2016

	0.2.3 - 11.07.2016

	0.2.2 - 01.06.2016

	0.2.1 - 23.04.2016

	0.2.0 - 17.01.2016

Indices and tables

	Index

	Module Index

	Search Page

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Introduction

This section introduces Excel data models, its representing data structures and provides
an overview of formatting, transformation, manipulation supported by pyexcel

Data models and data structures

When dealing with excel files, there are three primary objects: cell, sheet and book.
A book contains one or more sheets and a sheet is consisted of a sheet
name and a two dimensional array of cells. Although a sheet can contain charts and a cell can have
formula, styling properties, this library ignores them and pay attention to the data in the cell
and its data type. So, in the context of this library, the definition of those three concepts are:

	concept
	definition
	pyexcel data model

	a cell
	is a data unit
	a Python data type

	a sheet
	is a named two dimensional array of data units
	Sheet

	a book
	is a dictionary of two dimensional array of data units.
	Book

Data source

The most popular data source is an excel file. Libre Office/Microsoft Excel could easily
generate an new excel file of desired format. Besides a physical file, this library
recognizes additional three additional sources:

	Excel files in computer memory. For example when a file was uploaded to a Python server for
information processing, if it is relatively small, it will be stored in memory.

	Database tables. For example, a client would like to have a snapshot of some database table in
an excel file and ask it to be sent to him.

	Python structures. For example, a developer may have scrapped a site and hence stored data
in Python array or dictionary. He may want to save those information as a file.

Data format

This library and its plugins support most of the frequently used excel file formats.

	file format
	definition

	csv
	comma separated values

	tsv
	tab separated values

	csvz
	a zip file that contains one or many csv files

	tsvz
	a zip file that contains one or many tsv files

	xls
	a spreadsheet file format created by
MS-Excel 97-2003 [1]

	xlsx
	MS-Excel Extensions to the Office Open XML
SpreadsheetML File Format. [2]

	xlsm
	an MS-Excel Macro-Enabled Workbook file

	ods
	open document spreadsheet

	json
	java script object notation

	html
	html table of the data structure

	simple
	simple presentation

	rst
	rStructured Text presentation of the data

	mediawiki
	media wiki table

See also A list of file formats supported by external plugins.

Data transformation

Quite often, a developer would like to have the excel data in a Python data structures. This library
supports the conversions from previous three data source to the following
list of data structures, and vice versa.

A list of supported data structures

	Psudo name
	Python name
	Related model

	two dimensional array
	a list of lists
	Sheet

	a dictionary of one dimensional arrays
	a dictionary of lists
	Sheet

	a list of dictionaries
	a list of dictionaries
	Sheet

	a dictionary of two dimensional arrays
	a dictionary of lists of lists
	Book

Examples:

>>> two_dimensional_list = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]
>>> a_dictionary_of_one_dimensional_arrays = {
... "Column 1": [1, 2, 3, 4],
... "Column 2": [5, 6, 7, 8],
... "Column 3": [9, 10, 11, 12],
... }
>>> a_list_of_dictionaries = [
... {
... "Name": 'Adam',
... "Age": 28
... },
... {
... "Name": 'Beatrice',
... "Age": 29
... },
... {
... "Name": 'Ceri',
... "Age": 30
... },
... {
... "Name": 'Dean',
... "Age": 26
... }
...]
>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }

Data manipulations

The main operation on a cell involves cell access,
formatting and cleansing. The main operation on a sheet
involves the group access to a row or a column, data filtering and data transformation. The
main operation in a book is obtain access to individual sheets.

Data transcoding

For various reasons, the data in one format is to be transcoded into another format. This library
provides the transcoding tunnel for data transcoding in between supported file formats.

	[1]	quoted from whatis.com [http://whatis.techtarget.com/fileformat/XLS-Worksheet-file-Microsoft-Excel]. Technical details can be found at MSDN XLS [https://msdn.microsoft.com/en-us/library/office/gg615597(v=office.14).aspx]

	[2]	xlsx is used by MS-Excel 2007, more information can be found at MSDN XLSX [https://msdn.microsoft.com/en-us/library/dd922181(v=office.12).aspx]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Signature functions

Import data into Python

This library provides one application programming interface to read data from one of the following data sources:

	physical file

	memory file

	SQLAlchemy table

	Django Model

	Python data structures: dictionary, records and array

and to transform them into one of the data structures:

	two dimensional array

	a dictionary of one dimensional arrays

	a list of dictionaries

	a dictionary of two dimensional arrays

	a Sheet

	a Book

Four data access functions

It is believed that once a Python developer could easily operate on list, dictionary and various mixture of both. This library provides four
module level functions to help you obtain excel data in those formats. Please refer to “A list of module level functions”,
the first three functions operates on any one sheet from an excel book and the fourth one returns all data in all sheets in an excel book.

A list of module level functions

	Functions
	Name
	Python name

	get_array()
	two dimensional array
	a list of lists

	get_dict()
	a dictionary of one dimensional arrays
	an ordered dictionary of lists

	get_records()
	a list of dictionaries
	a list of dictionaries

	get_book_dict()
	a dictionary of two dimensional arrays
	a dictionary of lists of lists

See also:

	How to get an array from an excel sheet

	How to get a dictionary from an excel sheet

	How to obtain records from an excel sheet

	How to obtain a dictionary from a multiple sheet book

The following two variants of the data access function use generator and should work well with big data files

A list of variant functions

	Functions
	Name
	Python name

	iget_array()
	
	a memory efficient two dimensional

	array

	a generator of a list of lists

	iget_records()
	a memory efficient list
list of dictionaries
	a generator of
a list of dictionaries

Two native functions

In cases where the excel data needs custom manipulations, a pyexcel user got a few choices: one is to use Sheet
and Book, the other is to look for more sophisticated ones:

	Pandas, for numerical analysis

	Do-it-yourself

	Functions
	Returns

	get_sheet()
	Sheet

	get_book()
	Book

For all six functions, you can pass on the same command parameters while the return value is what the function says.

Export data from Python

This library provides one application programming interface to transform them into one of the data structures:

	two dimensional array

	a (ordered) dictionary of one dimensional arrays

	a list of dictionaries

	a dictionary of two dimensional arrays

	a Sheet

	a Book

and write to one of the following data sources:

	physical file

	memory file

	SQLAlchemy table

	Django Model

	Python data structures: dictionary, records and array

Here are the two functions:

	Functions
	Description

	save_as()
	Works well with single sheet file

	isave_as()
	Works well with big data files

	save_book_as()
	
	Works with multiple sheet file

	and big data files

If you would only use these two functions to do format transcoding, you may enjoy a
speed boost using isave_as() and save_book_as(),
because they use yield keyword and minize memory footprint.
save_as() uses Sheet, which reads all data into
memory.

See also:

	How to save an python array as an excel file

	How to save a dictionary of two dimensional array as an excel file

	How to save an python array as a csv file with special delimiter

Data transportation/transcoding

Based the capability of this library, it is capable of transporting your data in between any of these data sources:

	physical file

	memory file

	SQLAlchemy table

	Django Model

	Python data structures: dictionary, records and array

See also:

	How to an excel sheet to a database using SQLAlchemy

	How to open an xls file and save it as xlsx

	How to open an xls file and save it as csv

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Work with excel files

Warning

The pyexcel DOES NOT consider Fonts, Styles, Formulas and Charts at all. When you load a stylish excel and update it, you definitely will lose all those.

Add a new row to an existing file

Suppose you have one data file as the following:

example.xls

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

And you want to add a new row:

12, 11, 10

Here is the code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.row += [12, 11, 10]
>>> sheet.save_as("new_example.xls")
>>> pe.get_sheet(file_name="new_example.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+
| 12 | 11 | 10 |
+----------+----------+----------+

Update an existing row to an existing file

Suppose you want to update the last row of the example file as:

[‘N/A’, ‘N/A’, ‘N/A’]

Here is the sample code:

.. code-block:: python

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.row[3] = ['N/A', 'N/A', 'N/A']
>>> sheet.save_as("new_example1.xls")
>>> pe.get_sheet(file_name="new_example1.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| N/A | N/A | N/A |
+----------+----------+----------+

Add a new column to an existing file

And you want to add a column instead:

[“Column 4”, 10, 11, 12]

Here is the code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.column += ["Column 4", 10, 11, 12]
>>> sheet.save_as("new_example2.xls")
>>> pe.get_sheet(file_name="new_example2.xls")
pyexcel_sheet1:
+----------+----------+----------+----------+
| Column 1 | Column 2 | Column 3 | Column 4 |
+----------+----------+----------+----------+
| 1 | 4 | 7 | 10 |
+----------+----------+----------+----------+
| 2 | 5 | 8 | 11 |
+----------+----------+----------+----------+
| 3 | 6 | 9 | 12 |
+----------+----------+----------+----------+

Update an existing column to an existing file

Again let’s update “Column 3” with:

[100, 200, 300]

Here is the sample code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.column[2] = ["Column 3", 100, 200, 300]
>>> sheet.save_as("new_example3.xls")
>>> pe.get_sheet(file_name="new_example3.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 100 |
+----------+----------+----------+
| 2 | 5 | 200 |
+----------+----------+----------+
| 3 | 6 | 300 |
+----------+----------+----------+

Alternatively, you could have done like this:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet.column["Column 3"] = [100, 200, 300]
>>> sheet.save_as("new_example4.xls")
>>> pe.get_sheet(file_name="new_example4.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 100 |
+----------+----------+----------+
| 2 | 5 | 200 |
+----------+----------+----------+
| 3 | 6 | 300 |
+----------+----------+----------+

How about the same alternative solution to previous row based example? Well, you’d better to have the
following kind of data

row_example.xls

	Row 1
	1
	2
	3

	Row 2
	4
	5
	6

	Row 3
	7
	8
	9

And then you want to update “Row 3” with for example:

[100, 200, 300]

These code would do the job:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="row_example.xls", name_rows_by_column=0)
>>> sheet.row["Row 3"] = [100, 200, 300]
>>> sheet.save_as("new_example5.xls")
>>> pe.get_sheet(file_name="new_example5.xls")
pyexcel_sheet1:
+-------+-----+-----+-----+
| Row 1 | 1 | 2 | 3 |
+-------+-----+-----+-----+
| Row 2 | 4 | 5 | 6 |
+-------+-----+-----+-----+
| Row 3 | 100 | 200 | 300 |
+-------+-----+-----+-----+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Work with excel files in memory

Excel files in memory can be manipulated directly without saving it to physical disk and vice versa. This is useful in excel file handling at file upload or in excel file download. For example:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'

file type as its attributes

Since version 0.3.0, each supported file types became an attribute of the Sheet and
Book class. What it means is that:

	Read the content in memory

	Set the content in memory

For example, after you have your Sheet and Book instance, you could access its content in a support file type by using its dot notation. The code in previous section could be rewritten as:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

Read any supported excel and respond its content in json

You can find a real world example in examples/memoryfile/ directory: pyexcel_server.py. Here is the example snippet

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	def upload():
 if request.method == 'POST' and 'excel' in request.files:
 # handle file upload
 filename = request.files['excel'].filename
 extension = filename.split(".")[-1]
 # Obtain the file extension and content
 # pass a tuple instead of a file name
 content = request.files['excel'].read()
 if sys.version_info[0] > 2:
 # in order to support python 3
 # have to decode bytes to str
 content = content.decode('utf-8')
 sheet = pe.get_sheet(file_type=extension, file_content=content)
 # then use it as usual
 sheet.name_columns_by_row(0)
 # respond with a json
 return jsonify({"result": sheet.dict})
 return render_template('upload.html')

request.files[‘excel’] in line 4 holds the file object. line 5 finds out the file extension. line 13 obtains a sheet instance. line 15 uses the first row as data header. line 17 sends the json representation of the excel file back to client browser.

Write to memory and respond to download

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	data = [
 [...],
 ...
]

@app.route('/download')
def download():
 sheet = pe.Sheet(data)
 output = make_response(sheet.csv)
 output.headers["Content-Disposition"] = "attachment; filename=export.csv"
 output.headers["Content-type"] = "text/csv"
 return output

make_response is a Flask utility to make a memory content as http response.

Note

You can find the corresponding source code at examples/memoryfile [https://github.com/chfw/pyexcel/tree/master/examples/memoryfile]

Relevant packages

Readily made plugins have been made on top of this example. Here is a list of them:

	framework
	plugin/middleware/extension

	Flask
	Flask-Excel [https://github.com/chfw/Flask-Excel]

	Django
	django-excel [https://github.com/chfw/django-excel]

	Pyramid
	pyramid-excel [https://github.com/chfw/pyramid-excel]

And you may make your own by using pyexcel-webio [https://github.com/chfw/pyexcel-webio]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Sheet: Data conversion

How to obtain records from an excel sheet

Suppose you want to process the following excel data :

	Name
	Age

	Adam
	28

	Beatrice
	29

	Ceri
	30

	Dean
	26

Here are the example code:

>>> import pyexcel as pe
>>> records = pe.get_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26

How to get an array from an excel sheet

Suppose you have a csv, xls, xlsx file as the following:

	1
	2
	3

	4
	5
	6

	7
	8
	9

The following code will give you the data in json:

>>> import pyexcel
>>> # "example.csv","example.xlsx","example.xlsm"
>>> my_array = pyexcel.get_array(file_name="example.xls")
>>> my_array
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

How to save an python array as an excel file

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> import pyexcel
>>> pyexcel.save_as(array=data, dest_file_name="example.xls")

Let’s verify it:

>>> pyexcel.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

How to save an python array as a csv file with special delimiter

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> import pyexcel
>>> pyexcel.save_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

Let’s verify it:

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

How to get a dictionary from an excel sheet

Suppose you have a csv, xls, xlsx file as the following:

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

The following code will give you data series in a dictionary:

>>> import pyexcel
>>> from pyexcel._compact import OrderedDict
>>> my_dict = pyexcel.get_dict(file_name="example_series.xls", name_columns_by_row=0)
>>> isinstance(my_dict, OrderedDict)
True
>>> for key, values in my_dict.items():
... print({str(key): values})
{'Column 1': [1, 4, 7]}
{'Column 2': [2, 5, 8]}
{'Column 3': [3, 6, 9]}

Please note that my_dict is an OrderedDict.

How to obtain a dictionary from a multiple sheet book

Suppose you have a multiple sheet book as the following:

Sheet 1

	1
	2
	3

	4
	5
	6

	7
	8
	9

Sheet 2

	X
	Y
	Z

	1
	2
	3

	4
	5
	6

Sheet 3

	O
	P
	Q

	3
	2
	1

	4
	3
	2

Here is the code to obtain those sheets as a single dictionary:

>>> import pyexcel
>>> import json
>>> book_dict = pyexcel.get_book_dict(file_name="book.xls")
>>> isinstance(book_dict, OrderedDict)
True
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

How to save a dictionary of two dimensional array as an excel file

Suppose you want to save the below dictionary to an excel file

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }

Here is the code:

>>> pyexcel.save_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
...)

If you want to preserve the order of sheets in your dictionary, you have to
pass on an ordered dictionary to the function itself. For example:

>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> pyexcel.save_book_as(bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> book_dict = pyexcel.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

How to an excel sheet to a database using SQLAlchemy

Note

You can find the complete code of this example in examples folder on github

Before going ahead, let’s import the needed components and initialize sql
engine and table base:

>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column , Integer, String, Float, Date
>>> from sqlalchemy.orm import sessionmaker
>>> engine = create_engine("sqlite:///birth.db")
>>> Base = declarative_base()
>>> Session = sessionmaker(bind=engine)

Let’s suppose we have the following database model:

>>> class BirthRegister(Base):
... __tablename__='birth'
... id=Column(Integer, primary_key=True)
... name=Column(String)
... weight=Column(Float)
... birth=Column(Date)

Let’s create the table:

>>> Base.metadata.create_all(engine)

Now here is a sample excel file to be saved to the table:

	name
	weight
	birth

	Adam
	3.4
	2015-02-03

	Smith
	4.2
	2014-11-12

Here is the code to import it:

>>> session = Session() # obtain a sql session
>>> pyexcel.save_as(file_name="birth.xls", name_columns_by_row=0, dest_session=session, dest_table=BirthRegister)

Done it. It is that simple. Let’s verify what has been imported to make sure.

>>> sheet = pyexcel.get_sheet(session=session, table=BirthRegister)
>>> sheet
birth:
+------------+----+-------+--------+
| birth | id | name | weight |
+------------+----+-------+--------+
| 2015-02-03 | 1 | Adam | 3.4 |
+------------+----+-------+--------+
| 2014-11-12 | 2 | Smith | 4.2 |
+------------+----+-------+--------+

How to open an xls file and save it as csv

Suppose we want to save previous used example ‘birth.xls’ as a csv file

>>> import pyexcel
>>> pyexcel.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = pyexcel.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

Note

Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding job.

How to open an xls file and save it as xlsx

Warning

Formula, charts, images and formatting in xls file will disappear as pyexcel does not support Formula, charts, images and formatting.

Let use previous example and save it as ods instead

>>> import pyexcel
>>> pyexcel.save_as(file_name="birth.xls",
... dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = pyexcel.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

How to open a xls multiple sheet excel book and save it as csv

Well, you write similar codes as before but you will need to use save_book_as() function.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Dot notation for data source

Since version 0.3.0, the data source becomes an attribute of the pyexcel native
classes. All support data format is a dot notation away.

For sheet

Get content

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.tsv
'1\t2\t3\r\n3\t4\t5\r\n'
>>> print(sheet.simple)
csv:
- - -
1 2 3
3 4 5
- - -

What’s more, you could as well set value to an attribute, for example:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

You can get the direct access to underneath stream object. In some situation,
it is desired.

>>> stream = sheet.stream.tsv

The returned stream object has tsv formatted content for reading.

Set content

What you could further do is to set a memory stream of any supported file format
to a sheet. For example:

>>> another_sheet = pyexcel.Sheet()
>>> another_sheet.xls = sheet.xls
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 3 | 4 | 5 |
+---+---+---+

	Yet, it is possible assign a absolute url to an online excel file to an instance of

	pyexcel.Sheet.

>>> another_sheet.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/multiple-sheets-example.xls"
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

For book

The same dot notation is avaiable to pyexcel.Book as well.

Get content

>>> book_dict = {
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...],
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...]
... }
>>> book = pyexcel.get_book(bookdict=book_dict)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+
>>> print(book.rst)
Sheet 1:
= = =
1 2 3
4 5 6
7 8 9
= = =
Sheet 2:
=== === ===
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
=== === ===
Sheet 3:
=== === ===
O P Q
3.0 2.0 1.0
4.0 3.0 2.0
=== === ===

You can get the direct access to underneath stream object. In some situation,
it is desired.

>>> stream = sheet.stream.plain

The returned stream object has the content formatted in plain format
for further reading.

Set content

Surely, you could set content to an instance of pyexcel.Book.

>>> other_book = pyexcel.Book()
>>> other_book.bookdict = book_dict
>>> print(other_book.plain)
Sheet 1:
1 2 3
4 5 6
7 8 9
Sheet 2:
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
Sheet 3:
O P Q
3.0 2.0 1.0
4.0 3.0 2.0

You can set via ‘xls’ attribute too.

>>> another_book = pyexcel.Book()
>>> another_book.xls = other_book.xls
>>> print(another_book.mediawiki)
Sheet 1:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| align="right"| 1 || align="right"| 2 || align="right"| 3
|-
| align="right"| 4 || align="right"| 5 || align="right"| 6
|-
| align="right"| 7 || align="right"| 8 || align="right"| 9
|}
Sheet 2:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| X || Y || Z
|-
| 1 || 2 || 3
|-
| 4 || 5 || 6
|}
Sheet 3:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| O || P || Q
|-
| 3 || 2 || 1
|-
| 4 || 3 || 2
|}

How about setting content via a url?

>>> another_book.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/multiple-sheets-example.xls"
>>> another_book
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
Sheet 2:
+---+---+---+
| X | Y | Z |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
Sheet 3:
+---+---+---+
| O | P | Q |
+---+---+---+
| 3 | 2 | 1 |
+---+---+---+
| 4 | 3 | 2 |
+---+---+---+

Getters and Setters

You can pass on source specific parameters to getter and setter functions.

>>> content = "1-2-3\n3-4-5"
>>> sheet = pyexcel.Sheet()
>>> sheet.set_csv(content, delimiter="-")
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'
>>> sheet.get_csv(delimiter="|")
'1|2|3\r\n3|4|5\r\n'

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Work with big data sheet

Pagination

When you are dealing with huge amount of data, e.g. 64GB, obviously you would not
like to fill up your memory with those data. Hence pagnation feature is developed
to read partial data into memory for processing. You can pagninate by row, by
column and by both.

Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not
help unless a on-demand free RAM is available. However, there is a way to minize
the memory footprint of pyexcel while the formatting is performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv”
to “your_file.xls” but increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Sheet: Data Access

Random access to individual cell

To randomly access a cell of Sheet instance, two syntax are available:

sheet[row, column]

or:

sheet['A1']

The former syntax is handy when you know the row and column numbers. The latter syntax is introduced to help you convert the excel column header such as “AX” to integer numbers.

Suppose you have the following data, you can get value 5 by reader[2, 2].

	Example
	X
	Y
	Z

	a
	1
	2
	3

	b
	4
	5
	6

	c
	7
	8
	9

Here is the example code showing how you can randomly access a cell:

>>> import pyexcel

>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> sheet.content
+---------+---+---+---+
| Example | X | Y | Z |
+---------+---+---+---+
| a | 1 | 2 | 3 |
+---------+---+---+---+
| b | 4 | 5 | 6 |
+---------+---+---+---+
| c | 7 | 8 | 9 |
+---------+---+---+---+
>>> print(sheet[2, 2])
5
>>> print(sheet["C3"])
5
>>> sheet[3, 3] = 10
>>> print(sheet[3, 3])
10

Note

In order to set a value to a cell, please use sheet[row_index, column_index] = new_value

Random access to rows and columns

Continue with previous excel file, you can access row and column separately:

>>> sheet.row[1]
['a', 1, 2, 3]
>>> sheet.column[2]
['Y', 2, 5, 8]

Use custom names instead of index

Alternatively, it is possible to use the first row to refer to each columns:

>>> sheet.name_columns_by_row(0)
>>> print(sheet[1, "Y"])
5
 >>> sheet[1, "Y"] = 100
>>> print(sheet[1, "Y"])
100

You have noticed the row index has been changed. It is because first row is taken as the column names, hence all rows after the first row are shifted. Now accessing the columns are changed too:

>>> sheet.column['Y']
[2, 100, 8]

Hence access the same cell, this statement also works:

>>> sheet.column['Y'][1]
100

Further more, it is possible to use first column to refer to each rows:

>>> sheet.name_rows_by_column(0)

To access the same cell, we can use this line:

>>> sheet.row["b"][1]
100

For the same reason, the row index has been reduced by 1. Since we have named columns and rows, it is possible to access the same cell like this:

>>> print(sheet["b", "Y"])
100
>>> sheet["b", "Y"] = 200
>>> print(sheet["b", "Y"])
200

Note

When you have named your rows and columns, in order to set a value to a cell, please use sheet[row_name, column_name] = new_value

For multiple sheet file, you can regard it as three dimensional array if you use Book. So, you access each cell via this syntax:

book[sheet_index][row, column]

or:

book["sheet_name"][row, column]

Suppose you have the following sheets:

Sheet 1

	1
	2
	3

	4
	5
	6

	7
	8
	9

Sheet 2

	X
	Y
	Z

	1
	2
	3

	4
	5
	6

Sheet 3

	O
	P
	Q

	3
	2
	1

	4
	3
	2

And you can randomly access a cell in a sheet:

>>> book = pyexcel.get_book(file_name="example.xls")
>>> print(book["Sheet 1"][0,0])
1
>>> print(book[0][0,0]) # the same cell
1

Tip

With pyexcel, you can regard single sheet reader as an two dimensional array and multi-sheet excel book reader as a ordered dictionary of two dimensional arrays.

Reading a single sheet excel file

Suppose you have a csv, xls, xlsx file as the following:

	1
	2
	3

	4
	5
	6

	7
	8
	9

The following code will give you the data in json:

>>> import json
>>> # "example.csv","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> print(json.dumps(sheet.to_array()))
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Read the sheet as a dictionary

Suppose you have a csv, xls, xlsx file as the following:

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

The following code will give you data series in a dictionary:

>>> # "example.xls","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6, 9])])

Can I get an array of dictionaries per each row?

Suppose you have the following data:

	X
	Y
	Z

	1
	2
	3

	4
	5
	6

	7
	8
	9

The following code will produce what you want:

>>> # "example.csv","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> records = sheet.to_records()
>>> for record in records:
... keys = sorted(record.keys())
... print("{")
... for key in keys:
... print("'%s':%d" % (key, record[key]))
... print("}")
{
'X':1
'Y':2
'Z':3
}
{
'X':4
'Y':5
'Z':6
}
{
'X':7
'Y':8
'Z':9
}
>>> print(records[0]["X"]) # access first row and first item
1

Writing a single sheet excel file

Suppose you have an array as the following:

	1
	2
	3

	4
	5
	6

	7
	8
	9

The following code will write it as an excel file of your choice:

.. testcode::

>>> array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> # "output.xls" "output.xlsx" "output.ods" "output.xlsm"
>>> sheet = pyexcel.Sheet(array)
>>> sheet.save_as("output.csv")

Suppose you have a dictionary as the following:

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

The following code will write it as an excel file of your choice:

>>> example_dict = {"Column 1": [1, 2, 3], "Column 2": [4, 5, 6], "Column 3": [7, 8, 9]}
>>> # "output.xls" "output.xlsx" "output.ods" "output.xlsm"
>>> sheet = pyexcel.get_sheet(adict=example_dict)
>>> sheet.save_as("output.csv")

Write multiple sheet excel file

Suppose you have previous data as a dictionary and you want to save it as multiple sheet excel file:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> book = pyexcel.get_book(bookdict=content)
>>> book.save_as("output.xls")

You shall get a xls file

Read multiple sheet excel file

Let’s read the previous file back:

>>> book = pyexcel.get_book(file_name="output.xls")
>>> sheets = book.to_dict()
>>> for name in sheets.keys():
... print(name)
Sheet 1
Sheet 2
Sheet 3

Work with data series in a single sheet

Suppose you have the following data in any of the supported excel formats again:

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)

Play with data

You can get headers:

>>> print(list(sheet.colnames))
['Column 1', 'Column 2', 'Column 3']

You can use a utility function to get all in a dictionary:

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6, 9])])

Maybe you want to get only the data without the column headers. You can call rows() instead:

>>> list(sheet.rows())
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

You can get data from the bottom to the top one by calling rrows() instead:

>>> list(sheet.rrows())
[[7, 8, 9], [4, 5, 6], [1, 2, 3]]

You might want the data arranged vertically. You can call columns() instead:

>>> list(sheet.columns())
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

You can get columns in reverse sequence as well by calling rcolumns() instead:

>>> list(sheet.rcolumns())
[[3, 6, 9], [2, 5, 8], [1, 4, 7]]

Do you want to flatten the data? You can get the content in one dimensional array. If you are interested in playing with one dimensional enumeration, you can check out these functions enumerate(), reverse(), vertical(), and rvertical():

>>> list(sheet.enumerate())
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(sheet.reverse())
[9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(sheet.vertical())
[1, 4, 7, 2, 5, 8, 3, 6, 9]
>>> list(sheet.rvertical())
[9, 6, 3, 8, 5, 2, 7, 4, 1]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Sheet: Data manipulation

The data in a sheet is represented by Sheet which maintains the data
as a list of lists. You can regard Sheet as a two dimensional array
with additional iterators. Random access to individual column and row is exposed
by Column and Row

Column manipulation

Suppose have one data file as the following:

>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+

And you want to update Column 2 with these data: [11, 12, 13]

>>> sheet.column["Column 2"] = [11, 12, 13]
>>> sheet.column[1]
[11, 12, 13]
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 11 | 7 |
+----------+----------+----------+
| 2 | 12 | 8 |
+----------+----------+----------+
| 3 | 13 | 9 |
+----------+----------+----------+

Remove one column of a data file

If you want to remove Column 2, you can just call:

>>> del sheet.column["Column 2"]
>>> sheet.column["Column 3"]
[7, 8, 9]

The sheet content will become:

>>> sheet
pyexcel sheet:
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 1 | 7 |
+----------+----------+
| 2 | 8 |
+----------+----------+
| 3 | 9 |
+----------+----------+

Append more columns to a data file

Continue from previous example. Suppose you want add two more
columns to the data file

	Column 4
	Column 5

	10
	13

	11
	14

	12
	15

Here is the example code to append two extra columns:

>>> extra_data = [
... ["Column 4", "Column 5"],
... [10, 13],
... [11, 14],
... [12, 15]
...]
>>> sheet2 = pyexcel.Sheet(extra_data)
>>> sheet.column += sheet2
>>> sheet.column["Column 4"]
[10, 11, 12]
>>> sheet.column["Column 5"]
[13, 14, 15]

Here is what you will get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+----------+
| Column 1 | Column 3 | Column 4 | Column 5 |
+==========+==========+==========+==========+
| 1 | 7 | 10 | 13 |
+----------+----------+----------+----------+
| 2 | 8 | 11 | 14 |
+----------+----------+----------+----------+
| 3 | 9 | 12 | 15 |
+----------+----------+----------+----------+

Cherry pick some columns to be removed

Suppose you have the following data:

>>> data = [
... ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'],
... [1,2,3,4,5,6,7,9],
...]
>>> sheet = pyexcel.Sheet(data, name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+---+---+---+---+---+---+---+---+
| a | b | c | d | e | f | g | h |
+===+===+===+===+===+===+===+===+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
+---+---+---+---+---+---+---+---+

And you want to remove columns named as: ‘a’, ‘c, ‘e’, ‘h’. This is how you do it:

>>> del sheet.column['a', 'c', 'e', 'h']
>>> sheet
pyexcel sheet:
+---+---+---+---+
| b | d | f | g |
+===+===+===+===+
| 2 | 4 | 6 | 7 |
+---+---+---+---+

What if the headers are in a different row

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| 1 | 2 | 3 |
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

The way to name your columns is to use index 1:

>>> sheet.name_columns_by_row(1)

Here is what you get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

Row manipulation

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+---+---+---+-------+
| a | b | c | Row 1 |
+---+---+---+-------+
| e | f | g | Row 2 |
+---+---+---+-------+
| 1 | 2 | 3 | Row 3 |
+---+---+---+-------+

You can name your rows by column index at 3:

>>> sheet.name_rows_by_column(3)
>>> sheet
pyexcel sheet:
+-------+---+---+---+
| Row 1 | a | b | c |
+-------+---+---+---+
| Row 2 | e | f | g |
+-------+---+---+---+
| Row 3 | 1 | 2 | 3 |
+-------+---+---+---+

Then you can access rows by its name:

>>> sheet.row["Row 1"]
['a', 'b', 'c']

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Sheet: Data filtering

use filter() function to apply a filter immediately. The content is modified.

Suppose you have the following data in any of the supported excel formats:

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

>>> import pyexcel

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+
| 7 | 8 | 9 |
+----------+----------+----------+

Filter out some data

You may want to filter odd rows and print them in an array of dictionaries:

>>> sheet.filter(row_indices=[0, 2])
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 4 | 5 | 6 |
+----------+----------+----------+

Let’s try to further filter out even columns:

>>> sheet.filter(column_indices=[1])
>>> sheet.content
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 4 | 6 |
+----------+----------+

Save the data

Let’s save the previous filtered data:

>>> sheet.save_as("example_series_filter.xls")

When you open example_series_filter.xls, you will find these data

	Column 1
	Column 3

	2
	8

How to filter out empty rows in my sheet?

Suppose you have the following data in a sheet and you want to remove those rows with blanks:

>>> import pyexcel as pe
>>> sheet = pe.Sheet([[1,2,3],['','',''],['','',''],[1,2,3]])

You can use pyexcel.filters.RowValueFilter, which examines each row, return True if the row should be filtered out. So, let’s define a filter function:

>>> def filter_row(row_index, row):
... result = [element for element in row if element != '']
... return len(result)==0

And then apply the filter on the sheet:

>>> del sheet.row[filter_row]
>>> sheet
pyexcel sheet:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Sheet: Formatting

Previous section has assumed the data is in the format that you want. In reality, you have to
manipulate the data types a bit to suit your needs. Hence, formatters comes into the scene.
use format() to apply formatter immediately.

Note

int, float andate datetime values are automatically detected in csv files
since pyexcel version 0.2.2

Convert a column of numbers to strings

Suppose you have the following data:

>>> import pyexcel
>>> data = [
... ["userid","name"],
... [10120,"Adam"],
... [10121,"Bella"],
... [10122,"Cedar"]
...]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.name_columns_by_row(0)
>>> sheet.column["userid"]
[10120, 10121, 10122]

As you can see, userid column is of int type. Next, let’s convert the column to string format:

>>> sheet.column.format("userid", str)
>>> sheet.column["userid"]
['10120', '10121', '10122']

Cleanse the cells in a spread sheet

Sometimes, the data in a spreadsheet may have unwanted strings in all or some
cells. Let’s take an example. Suppose we have a spread sheet that contains
all strings but it as random spaces before and after the text values. Some
field had weird characters, such as “ ”:

>>> data = [
... [" Version", " Comments", " Author "],
... [" v0.0.1 ", " Release versions"," Eda"],
... [" v0.0.2 ", "Useful updates ", " Freud"]
...]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.content
+-----------------+------------------------------+----------------------+
| Version | Comments | Author |
+-----------------+------------------------------+----------------------+
| v0.0.1 | Release versions | Eda |
+-----------------+------------------------------+----------------------+
| v0.0.2 | Useful updates | Freud |
+-----------------+------------------------------+----------------------+

Now try to create a custom cleanse function:

.. code-block:: python

>>> def cleanse_func(v):
... v = v.replace(" ", "")
... v = v.rstrip().strip()
... return v
...

Then let’s create a SheetFormatter and apply it:

.. code-block:: python

>>> sheet.map(cleanse_func)

So in the end, you get this:

>>> sheet.content
+---------+------------------+--------+
| Version | Comments | Author |
+---------+------------------+--------+
| v0.0.1 | Release versions | Eda |
+---------+------------------+--------+
| v0.0.2 | Useful updates | Freud |
+---------+------------------+--------+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Book: Sheet operations

Access to individual sheets

You can access individual sheet of a book via attribute:

>>> book = pyexcel.get_book(file_name="book.xls")
>>> book.sheet3
sheet3:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

or via array notations:

>>> book["sheet 1"] # there is a space in the sheet name
sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+

Merge excel books

Suppose you have two excel books and each had three sheets. You can merge them and get a new book:

You also can merge indivdual sheets:

>>> book1 = pyexcel.get_book(file_name="book1.xls")
>>> book2 = pyexcel.get_book(file_name="book2.xlsx")
>>> merged_book = book1 + book2
>>> merged_book = book1["Sheet 1"] + book2["Sheet 2"]
>>> merged_book = book1["Sheet 1"] + book2
>>> merged_book = book1 + book2["Sheet 2"]

Manipulate individual sheets

merge sheets into a single sheet

Suppose you want to merge many csv files row by row into a new sheet.

>>> import glob
>>> merged = pyexcel.Sheet()
>>> for file in glob.glob("*.csv"):
... merged.row += pyexcel.get_sheet(file_name=file)
>>> merged.save_as("merged.csv")

How do I read a book, process it and save to a new book

Yes, you can do that. The code looks like this:

import pyexcel

book = pyexcel.get_book(file_name="yourfile.xls")
for sheet in book:
 # do you processing with sheet
 # do filtering?
 pass
book.save_as("output.xls")

What would happen if I save a multi sheet book into “csv” file

Well, you will get one csv file per each sheet. Suppose you have these code:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> book = pyexcel.Book(content)
>>> book.save_as("myfile.csv")

You will end up with three csv files:

>>> import glob
>>> outputfiles = glob.glob("myfile_*.csv")
>>> for file in sorted(outputfiles):
... print(file)
...
myfile__Sheet 1__0.csv
myfile__Sheet 2__1.csv
myfile__Sheet 3__2.csv

and their content is the value of the dictionary at the corresponding key

Alternatively, you could use save_book_as() function

>>> pyexcel.save_book_as(bookdict=content, dest_file_name="myfile.csv")

After I have saved my multiple sheet book in csv format, how do I get them back

First of all, you can read them back individual as csv file using meth:~pyexcel.get_sheet method. Secondly, the pyexcel can do
the magic to load all of them back into a book. You will just need to provide the common name before the separator “__”:

>>> book2 = pyexcel.get_book(file_name="myfile.csv")
>>> book2
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

How to log pyexcel

When developing source plugins, it becomes necessary to have log trace available.
It helps find out what goes wrong quickly.

The basic step would be to set up logging before pyexcel import statement.

import logging
import logging.config
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
 level=logging.DEBUG)

import pyexcel

And if you would use a complex configuration, you can use the following code.

import logging
import logging.config
logging.config.fileConfig('log.conf')

import pyexcel

And then save the following content as log.conf in your directory:

[loggers]
keys=root, sources, renderers

[handlers]
keys=consoleHandler

[formatters]
keys=custom

[logger_root]
level=INFO
handlers=consoleHandler

[logger_sources]
level=DEBUG
handlers=consoleHandler
qualname=pyexcel.sources.factory
propagate=0

[logger_renderers]
level=DEBUG
handlers=consoleHandler
qualname=pyexcel.renderers.factory
propagate=0

[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=custom
args=(sys.stdout,)

[formatter_custom]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Migrate away from 0.4.3

get_{{file_type}}_stream functions from pyexcel.Sheet and pyexel.Book were
introduced since 0.4.3 but were removed since 0.4.4. Please be advised to
use save_to_memory functions, Sheet.io.{{file_type}} or
Book.io.{{file_type}}.

Migrate from 0.2.x to 0.3.0+

Filtering and formatting behavior of pyexcel.Sheet are simplified. Soft
filter and soft formatter are removed. Extra classes such as iterator, formatter,
filter are removed.

Most of formatting tasks could be achieved using format()
and map(). and Filtering with filter().
Formatting and filtering on row and/or column can be found with
row() and column()

1. Updated filter function

There is no alternative to replace the folowing code:

sheet.filter(pe.OddRowFilter())

You will need to remove odd rows by yourself:

>>> import pyexcel as pe
>>> data = [
... ['1'],
... ['2'],
... ['3'],
...]
>>> sheet = pe.Sheet(data)
>>> to_remove = []
>>> for index in sheet.row_range():
... if index % 2 == 0:
... to_remove.append(index)
>>> sheet.filter(row_indices=to_remove)
>>> sheet
pyexcel sheet:
+---+
| 2 |
+---+

Or, you could do this:

>>> data = [
... ['1'],
... ['2'],
... ['3'],
...]
>>> sheet = pe.Sheet(data)
>>> def odd_filter(row_index, _):
... return row_index % 2 == 0
>>> del sheet.row[odd_filter]
>>> sheet
pyexcel sheet:
+---+
| 2 |
+---+

And the same applies to EvenRowFilter, OddColumnFilter, EvenColumnFilter.

2. Updated format function

2.1 Replacement of sheetformatter

The following formatting code:

sheet.apply_formatter(pe.sheets.formatters.SheetFormatter(int))

can be replaced by:

sheet.format(int)

2.2 Repalcement of row formatters

The following code:

row_formatter = pe.sheets.formatters.RowFormatter([1, 2], str)
sheet.add_formatter(row_formatter)

can be replaced by:

sheet.row.format([1, 2], str)

2.3 Replacement of column formatters

The following code:

f = NamedColumnFormatter(["Column 1", "Column 3"], str)
sheet.apply_formatter(f)

can be replaced by:

sheet.column.format(["Column 1", "Column 3"], str)

Migrate from 0.2.1 to 0.2.2+

1. Explicit imports, no longer needed

Please forget about these statements:

import pyexcel.ext.xls
import pyexcel.ext.ods
import pyexcel.ext.xlsx

They are no longer needed. As long as you have pip-installed them, they will
be auto-loaded. However, if you do not want some of the plugins, please use
pip to uninstall them.

What if you have your code as it is? No harm but a few warnings shown:

Deprecated usage since v0.2.2! Explicit import is no longer required. pyexcel.ext.ods is auto imported.

2. Invalid environment marker: platform_python_implementation==”PyPy”

Yes, it is a surprise. Please upgrade setuptools in your environment:

pip install --upgrade setuptools

At the time of writing, setuptools (18.0.1) or setuptools-21.0.0-py2.py3-none-any.whl is installed on author’s computer and worked.

3. How to keep both pyexcel-xls and pyexcel-xlsx

As in Issue 20 [https://github.com/pyexcel/pyexcel/issues/20], pyexcel-xls was used for xls and pyexcel-xlsx had to be used for xlsx. Both must co-exist due to requirements. The workaround would failed when auto-import are enabled in v0.2.2. Hence, user of pyexcel in this situation shall use ‘library’ parameter to all signature functions, to instruct pyexcel to use a named library for each function call.

4. pyexcel.get_io is no longer exposed

pyexcel.get_io was passed on from pyexcel-io. However, it is no longer exposed. Please use pyexcel_io.manager.RWManager.get_io if you have to.

You are likely to use pyexcel.get_io when you do pyexcel.Sheet.save_to_memory() or pyexcel.Book.save_to_memory() where you need to put in a io stream. But actually,
with latest code, you could put in a None.

Migrate from 0.1.x to 0.2.x

1. “Writer” is gone, Please use save_as.

Here is a piece of legacy code:

w = pyexcel.Writer("afile.csv")
data=[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 1.1, 1]]
w.write_array(table)
w.close()

The new code is:

>>> data=[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 1.1, 1]]
>>> pyexcel.save_as(array=data, dest_file_name="afile.csv")

Here is another piece of legacy code:

content = {
 "X": [1,2,3,4,5],
 "Y": [6,7,8,9,10],
 "Z": [11,12,13,14,15],
}
w = pyexcel.Writer("afile.csv")
w.write_dict(self.content)
w.close()

The new code is:

>>> content = {
... "X": [1,2,3,4,5],
... "Y": [6,7,8,9,10],
... "Z": [11,12,13,14,15],
... }
>>> pyexcel.save_as(adict=content, dest_file_name="afile.csv")

Here is yet another piece of legacy code:

data = [
 [1, 2, 3],
 [4, 5, 6]
]
io = StringIO()
w = pyexcel.Writer(("csv",io))
w.write_rows(data)
w.close()

The new code is:

>>> data = [
... [1, 2, 3],
... [4, 5, 6]
...]
>>> io = pyexcel.save_as(dest_file_type='csv', array=data)
>>> for line in io.readlines():
... print(line.rstrip())
1,2,3
4,5,6

2. “BookWriter” is gone. Please use save_book_as.

Here is a piece of legacy code:

import pyexcel
content = {
 "Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]],
 "Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]],
 "Sheet3": [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]
 }
w = pyexcel.BookWriter("afile.csv")
w.write_book_from_dict(content)
w.close()

The replacement code is:

>>> import pyexcel
>>> content = {
... "Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]],
... "Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]],
... "Sheet3": [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]
... }
>>> pyexcel.save_book_as(bookdict=content, dest_file_name="afile.csv")

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Recipes

Warning

The pyexcel DOES NOT consider Fonts, Styles and Charts at all. In the resulting excel files, fonts, styles and charts will not be transferred.

These recipes give a one-stop utility functions for known use cases. Similar functionality can be achieved using other application interfaces.

Update one column of a data file

Suppose you have one data file as the following:

example.xls

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

And you want to update Column 2 with these data: [11, 12, 13]

Here is the code:

>>> from pyexcel.cookbook import update_columns
>>> custom_column = {"Column 2":[11, 12, 13]}
>>> update_columns("example.xls", custom_column, "output.xls")

Your output.xls will have these data:

	Column 1
	Column 2
	Column 3

	1
	11
	7

	2
	12
	8

	3
	13
	9

Update one row of a data file

Suppose you have the same data file:

example.xls

	Row 1
	1
	2
	3

	Row 2
	4
	5
	6

	Row 3
	7
	8
	9

And you want to update the second row with these data: [7, 4, 1]

Here is the code:

>>> from pyexcel.cookbook import update_rows
>>> custom_row = {"Row 1":[11, 12, 13]}
>>> update_rows("example.xls", custom_row, "output.xls")

Your output.xls will have these data:

	Column 1
	Column 2
	Column 3

	7
	4
	1

	2
	5
	8

	3
	6
	9

Merge two files into one

Suppose you want to merge the following two data files:

example.csv

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

example.xls

	Column 4
	Column 5

	10
	12

	11
	13

The following code will merge the tow into one file, say “output.xls”:

>>> from pyexcel.cookbook import merge_two_files
>>> merge_two_files("example.csv", "example.xls", "output.xls")

The output.xls would have the following data:

	Column 1
	Column 2
	Column 3
	Column 4
	Column 5

	1
	4
	7
	10
	12

	2
	5
	8
	11
	13

	3
	6
	9
	
	

Select candidate columns of two files and form a new one

Suppose you have these two files:

example.ods

	Column 1
	Column 2
	Column 3
	Column 4
	Column 5

	1
	4
	7
	10
	13

	2
	5
	8
	11
	14

	3
	6
	9
	12
	15

example.xls

	Column 6
	Column 7
	Column 8
	Column 9
	Column 10

	16
	17
	18
	19
	20

>>> data = [
... ["Column 1", "Column 2", "Column 3", "Column 4", "Column 5"],
... [1, 4, 7, 10, 13],
... [2, 5, 8, 11, 14],
... [3, 6, 9, 12, 15]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.csv")
>>> data = [
... ["Column 6", "Column 7", "Column 8", "Column 9", "Column 10"],
... [16, 17, 18, 19, 20]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.xls")

And you want to filter out column 2 and 4 from example.ods, filter out column 6 and 7 and merge them:

	Column 1
	Column 3
	Column 5
	Column 8
	Column 9
	Column 10

	1
	7
	13
	18
	19
	20

	2
	8
	14
	
	
	

	3
	9
	15
	
	
	

The following code will do the job:

>>> from pyexcel.cookbook import merge_two_readers
>>> sheet1 = pyexcel.get_sheet(file_name="example.csv", name_columns_by_row=0)
>>> sheet2 = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> del sheet1.column[1, 3, 5]
>>> del sheet2.column[0, 1]
>>> merge_two_readers(sheet1, sheet2, "output.xls")

Merge two files into a book where each file become a sheet

Suppose you want to merge the following two data files:

example.csv

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

example.xls

	Column 4
	Column 5

	10
	12

	11
	13

>>> data = [
... ["Column 1", "Column 2", "Column 3"],
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.csv")
>>> data = [
... ["Column 4", "Column 5"],
... [10, 12],
... [11, 13]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.xls")

The following code will merge the tow into one file, say “output.xls”:

>>> from pyexcel.cookbook import merge_all_to_a_book
>>> merge_all_to_a_book(["example.csv", "example.xls"], "output.xls")

The output.xls would have the following data:

example.csv as sheet name and inside the sheet, you have:

	Column 1
	Column 2
	Column 3

	1
	4
	7

	2
	5
	8

	3
	6
	9

example.ods as sheet name and inside the sheet, you have:

	Column 4
	Column 5

	10
	12

	11
	13

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say “output.xls”:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_csv_directory*.csv"), "output.xls")

You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls, xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_excel_file_directory*.*"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob("*_output.xls")
>>> for file in sorted(outputfiles):
... print(file)
...
Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

for the output file, you can specify any of the supported formats

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls")
>>> if os.path.exists("Sheet 1_output.xls"):
... print("Sheet 1_output.xls exists")
...
Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Loading from other sources

How to load a sheet from a url

Suppose you have excel file somewhere hosted:

>>> sheet = pe.get_sheet(url='http://yourdomain.com/test.csv')
>>> sheet
csv:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Questions and Answers

	Python flask writing to a csv file and reading it [http://stackoverflow.com/questions/27338891/python-flask-writing-to-a-csv-file-and-reading-it#27348717]

	PyQt: Import .xls file and populate QTableWidget? [http://stackoverflow.com/questions/11817161/pyqt-import-xls-file-and-populate-qtablewidget#25910499]

	How do I write data to csv file in columns and rows from a list in python? [http://stackoverflow.com/questions/7528801/how-do-i-write-data-to-csv-file-in-columns-and-rows-from-a-list-in-python/27108294#27108294]

	How to write dictionary values to a csv file using Python [http://stackoverflow.com/questions/26901570/how-to-write-dictionary-values-to-a-csv-file-using-python/26950398#26950398]

	Python convert csv to xlsx [http://stackoverflow.com/questions/17684610/python-convert-csv-to-xlsx/26456641#26456641]

	How to read data from excel and set data type [http://stackoverflow.com/questions/26953628/how-to-read-data-from-excel-and-set-data-type/27138572#27138572]

	Remove or keep specific columns in csv file [http://stackoverflow.com/questions/27342590/remove-or-keep-specific-columns-in-csv-file/27348897#27348897]

	How can I put a CSV file in an array? [http://stackoverflow.com/questions/27318907/how-can-i-put-a-csv-file-in-an-array/27348806#27348806]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

API Reference

This is intended for users of pyexcel.

Signature functions

Obtaining data from excel file

	get_array(**keywords)
	Obtain an array from an excel source

	get_dict([name_columns_by_row])
	Obtain a dictionary from an excel source

	get_records([name_columns_by_row])
	Obtain a list of records from an excel source

	get_book_dict(**keywords)
	Obtain a dictionary of two dimensional arrays

	get_book(**keywords)
	Get an instance of Book from an excel source

	get_sheet(**keywords)
	Get an instance of Sheet from an excel source

	iget_array(**keywords)
	Obtain a generator of an two dimensional array from an excel source

	iget_records(**keywords)
	Obtain a generator of a list of records from an excel source

Saving data to excel file

	save_as(**keywords)
	Save a sheet from a data source to another one

	isave_as(**keywords)
	Save a sheet from a data source to another one with less memory

	save_book_as(**keywords)
	Save a book from a data source to another one

These flags can be passed on all signature functions:

auto_detect_int

Automatically convert float values to integers if the float number has no
decimal values(e.g. 1.00). By default, it does the detection. Setting it to
False will turn on this behavior

It has no effect on pyexcel-xlsx because it does that by default.

auto_detect_float

Automatically convert text to float values if possible. This applies only
pyexcel-io where csv, tsv, csvz and tsvz formats are supported. By default,
it does the detection. Setting it to False will turn on this behavior

auto_detect_datetime

Automatically convert text to python datetime if possible. This applies only
pyexcel-io where csv, tsv, csvz and tsvz formats are supported. By default,
it does the detection. Setting it to False will turn on this behavior

library

Name a pyexcel plugin to handle a file format. In the situation where multiple
plugins were pip installed, it is confusing for pyexcel on which plugin to
handle the file format. For example, both pyexcel-xlsx and pyexcel-xls reads
xlsx format. Now since version 0.2.2, you can pass on library=”pyexcel-xls”
to handle xlsx in a specific function call.

It is better to uninstall the unwanted pyexcel plugin using pip if two plugins
for the same file type are not absolutely necessary.

Cookbook

	merge_csv_to_a_book(filelist[,

 pyexcel.get_array

pyexcel.get_array

	
pyexcel.get_array(**keywords)

	Obtain an array from an excel source

It accepts the same parameters as get_sheet()
but return an array instead.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.get_dict

pyexcel.get_dict

	
pyexcel.get_dict(name_columns_by_row=0, **keywords)

	Obtain a dictionary from an excel source

It accepts the same parameters as get_sheet()
but return a dictionary instead.

Specifically:
:param name_columns_by_row: specify a row to be a dictionary key.
It is default to 0 or first row.

If you would use a column index 0 instead, you should do:

get_dict(name_columns_by_row=-1, name_rows_by_column=0)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.get_records

pyexcel.get_records

	
pyexcel.get_records(name_columns_by_row=0, **keywords)

	Obtain a list of records from an excel source

It accepts the same parameters as get_sheet()
but return a list of dictionary(records) instead.

Specifically:
:param name_columns_by_row: specify a row to be a dictionary key.
It is default to 0 or first row.

If you would use a column index 0 instead, you should do:

get_records(name_columns_by_row=-1, name_rows_by_column=0)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.get_book_dict

pyexcel.get_book_dict

	
pyexcel.get_book_dict(**keywords)

	Obtain a dictionary of two dimensional arrays

It accepts the same parameters as get_book()
but return a dictionary instead.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.get_book

pyexcel.get_book

	
pyexcel.get_book(**keywords)

	Get an instance of Book from an excel source

	Parameters:	
	file_name – a file with supported file extension

	file_content – the file content

	file_stream – the file stream

	file_type – the file type in content

	session – database session

	tables – a list of database table

	models – a list of django models

	bookdict – a dictionary of two dimensional arrays

	url – a download http url for your excel file

see also A list of supported data structures

Here is a table of parameters:

	source
	parameters

	loading from file
	file_name, keywords

	loading from memory
	file_type, content, keywords

	loading from sql
	session, tables

	loading from django models
	models

	loading from dictionary
	bookdict

	loading from an url
	url

Where the dictionary should have text as keys and two dimensional
array as values.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.get_sheet

pyexcel.get_sheet

	
pyexcel.get_sheet(**keywords)

	Get an instance of Sheet from an excel source

	Parameters:	
	file_name – a file with supported file extension

	file_content – the file content

	file_stream – the file stream

	file_type – the file type in content

	session – database session

	table – database table

	model – a django model

	adict – a dictionary of one dimensional arrays

	url – a download http url for your excel file

	with_keys – load with previous dictionary’s keys, default is True

	records – a list of dictionaries that have the same keys

	array – a two dimensional array, a list of lists

	keywords – additional parameters, see Sheet.__init__()

	sheet_name – sheet name. if sheet_name is not given,
the default sheet at index 0 is loaded

Not all parameters are needed. Here is a table

	source
	parameters

	loading from file
	file_name, sheet_name, keywords

	loading from memory
	file_type, content, sheet_name, keywords

	loading from sql
	session, table

	loading from sql in django
	model

	loading from query sets
	any query sets(sqlalchemy or django)

	loading from dictionary
	adict, with_keys

	loading from records
	records

	loading from array
	array

	loading from an url
	url

see also A list of supported data structures

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.iget_array

pyexcel.iget_array

	
pyexcel.iget_array(**keywords)

	Obtain a generator of an two dimensional array from an excel source

It is similiar to pyexcel.get_array() but it has less memory
footprint.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.iget_records

pyexcel.iget_records

	
pyexcel.iget_records(**keywords)

	Obtain a generator of a list of records from an excel source

It is similiar to pyexcel.get_records() but it has less memory
footprint but requires the headers to be in the first row. And the
data matrix should be of equal length. It should consume less memory
and should work well with large files.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.save_as

pyexcel.save_as

	
pyexcel.save_as(**keywords)

	Save a sheet from a data source to another one

It accepts two sets of keywords. Why two sets? one set is
source, the other set is destination. In order to distinguish
the two sets, source set will be exactly the same
as the ones for pyexcel.get_sheet(); destination
set are exactly the same as the ones for pyexcel.Sheet.save_as
but require a ‘dest’ prefix.

	param file_name:

	 	a file with supported file extension

	param file_content:

	 	the file content

	param file_stream:

	 	the file stream

	param file_type:

	 	the file type in content

	param session:	database session

	param table:	database table

	param model:	a django model

	param adict:	a dictionary of one dimensional arrays

	param url:	a download http url for your excel file

	param with_keys:

	 	load with previous dictionary’s keys, default is True

	param records:	a list of dictionaries that have the same keys

	param array:	a two dimensional array, a list of lists

	param keywords:	additional parameters, see Sheet.__init__()

	param sheet_name:

	 	sheet name. if sheet_name is not given,
the default sheet at index 0 is loaded

	param dest_file_name:

	 	another file name. out_file is deprecated
though is still accepted.

	param dest_file_type:

	 	this is needed if you want to save to memory

	param dest_session:

	 	the target database session

	param dest_table:

	 	the target destination table

	param dest_model:

	 	the target django model

	param dest_mapdict:

	 	a mapping dictionary,
see pyexcel.Sheet.save_to_memory()

	param dest_initializer:

	 	a custom initializer function for table or model

	param dest_mapdict:

	 	nominate headers

	param dest_batch_size:

	 	object creation batch size.
it is Django specific

	returns:	IO stream if saving to memory. None otherwise

if csv file is destination format, python csv
fmtparams [https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters]
are accepted

for example: dest_lineterminator will replace default ‘

	‘

	to the one you specified

	source
	parameters

	loading from file
	file_name, sheet_name, keywords

	loading from memory
	file_type, content, sheet_name, keywords

	loading from sql
	session, table

	loading from sql in django
	model

	loading from query sets
	any query sets(sqlalchemy or django)

	loading from dictionary
	adict, with_keys

	loading from records
	records

	loading from array
	array

	loading from an url
	url

	Saving to source
	parameters

	file
	dest_file_name, dest_sheet_name,
keywords with prefix ‘dest’

	memory
	dest_file_type, dest_content,
dest_sheet_name, keywords with prefix ‘dest’

	sql
	dest_session, dest_table,
dest_initializer, dest_mapdict

	django model
	dest_model, dest_initializer,
dest_mapdict, dest_batch_size

In addition, this function use pyexcel.Sheet to
render the data which could have performance penalty. In exchange,
parameters for pyexcel.Sheet can be passed on, e.g.
name_columns_by_row.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.isave_as

pyexcel.isave_as

	
pyexcel.isave_as(**keywords)

	Save a sheet from a data source to another one with less memory

It is simliar to pyexcel.save_as() except that it does
not accept parameters for pyexcel.Sheet. And it read
when it writes.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.save_book_as

pyexcel.save_book_as

	
pyexcel.save_book_as(**keywords)

	Save a book from a data source to another one

	Parameters:	
	file_name – a file with supported file extension

	file_content – the file content

	file_stream – the file stream

	file_type – the file type in content

	session – database session

	tables – a list of database table

	models – a list of django models

	bookdict – a dictionary of two dimensional arrays

	url – a download http url for your excel file

	dest_file_name – another file name. out_file is
deprecated though is still accepted.

	dest_file_type – this is needed if you want to save to memory

	dest_session – the target database session

	dest_tables – the list of target destination tables

	dest_models – the list of target destination django models

	dest_mapdicts – a list of mapping dictionaries

	dest_initializers – table initialization functions

	dest_mapdicts – to nominate a model or table fields. Optional

	dest_batch_size – batch creation size. Optional

	keywords – additional keywords can be found at
pyexcel.get_book()

	Returns:	IO stream if saving to memory. None otherwise

see also A list of supported data structures

Here is a table of parameters:

	source
	parameters

	loading from file
	file_name, keywords

	loading from memory
	file_type, content, keywords

	loading from sql
	session, tables

	loading from django models
	models

	loading from dictionary
	bookdict

	loading from an url
	url

Where the dictionary should have text as keys and two dimensional
array as values.

	Saving to source
	parameters

	file
	dest_file_name, dest_sheet_name,
keywords with prefix ‘dest’

	memory
	dest_file_type, dest_content,
dest_sheet_name, keywords with prefix ‘dest’

	sql
	dest_session, dest_tables,
dest_table_init_func, dest_mapdict

	django model
	dest_models, dest_initializers,
dest_mapdict, dest_batch_size

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.merge_csv_to_a_book

pyexcel.merge_csv_to_a_book

	
pyexcel.merge_csv_to_a_book(filelist, outfilename='merged.xls')

	merge a list of csv files into a excel book

	Parameters:	
	filelist (list) – a list of accessible file path

	outfilename (str) – save the sheet as

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.merge_all_to_a_book

pyexcel.merge_all_to_a_book

	
pyexcel.merge_all_to_a_book(filelist, outfilename='merged.xls')

	merge a list of excel files into a excel book

	Parameters:	
	filelist (list) – a list of accessible file path

	outfilename (str) – save the sheet as

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.split_a_book

pyexcel.split_a_book

	
pyexcel.split_a_book(file_name, outfilename=None)

	Split a file into separate sheets

	Parameters:	
	file_name (str) – an accessible file name

	outfilename (str) – save the sheets with file suffix

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.extract_a_sheet_from_a_book

pyexcel.extract_a_sheet_from_a_book

	
pyexcel.extract_a_sheet_from_a_book(file_name, sheetname, outfilename=None)

	Extract a sheet from a excel book

	Parameters:	
	file_name (str) – an accessible file name

	sheetname (str) – a valid sheet name

	outfilename (str) – save the sheet as

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book

pyexcel.Book

	
class pyexcel.Book(sheets=None, filename='memory', path=None)

	Read an excel book that has one or more sheets

For csv file, there will be just one sheet

	
__init__(sheets=None, filename='memory', path=None)

	Book constructor

Selecting a specific book according to filename extension

	Parameters:	
	sheets – a dictionary of data

	filename – the physical file

	path – the relative path or absolute path

	keywords – additional parameters to be passed on

Methods

	__init__([sheets,

 pyexcel.Book.number_of_sheets

pyexcel.Book.number_of_sheets

	
Book.number_of_sheets()

	Return the number of sheets

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.sheet_names

pyexcel.Book.sheet_names

	
Book.sheet_names()

	Return all sheet names

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.bookdict

pyexcel.Book.bookdict

	
Book.bookdict

	Get/Set data in/from bookdict format

You could obtain content in bookdict format by dot notation:

Book.bookdict

And you could as well set content by dot notation:

Book.bookdict = the_io_stream_in_bookdict_format

if you need to pass on more parameters, you could use:

Book.get_bookdict(**keywords)
Book.set_bookdict(the_io_stream_in_bookdict_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.url

pyexcel.Book.url

	
Book.url

	Set data in url format

You could set content in url format by dot notation:

Book.url

if you need to pass on more parameters, you could use:

Book.set_url(the_io_stream_in_url_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.csv

pyexcel.Book.csv

	
Book.csv

	Get/Set data in/from csv format

You could obtain content in csv format by dot notation:

Book.csv

And you could as well set content by dot notation:

Book.csv = the_io_stream_in_csv_format

if you need to pass on more parameters, you could use:

Book.get_csv(**keywords)
Book.set_csv(the_io_stream_in_csv_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.tsv

pyexcel.Book.tsv

	
Book.tsv

	Get/Set data in/from tsv format

You could obtain content in tsv format by dot notation:

Book.tsv

And you could as well set content by dot notation:

Book.tsv = the_io_stream_in_tsv_format

if you need to pass on more parameters, you could use:

Book.get_tsv(**keywords)
Book.set_tsv(the_io_stream_in_tsv_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.csvz

pyexcel.Book.csvz

	
Book.csvz

	Get/Set data in/from csvz format

You could obtain content in csvz format by dot notation:

Book.csvz

And you could as well set content by dot notation:

Book.csvz = the_io_stream_in_csvz_format

if you need to pass on more parameters, you could use:

Book.get_csvz(**keywords)
Book.set_csvz(the_io_stream_in_csvz_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.tsvz

pyexcel.Book.tsvz

	
Book.tsvz

	Get/Set data in/from tsvz format

You could obtain content in tsvz format by dot notation:

Book.tsvz

And you could as well set content by dot notation:

Book.tsvz = the_io_stream_in_tsvz_format

if you need to pass on more parameters, you could use:

Book.get_tsvz(**keywords)
Book.set_tsvz(the_io_stream_in_tsvz_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.xls

pyexcel.Book.xls

	
Book.xls

	Get/Set data in/from xls format

You could obtain content in xls format by dot notation:

Book.xls

And you could as well set content by dot notation:

Book.xls = the_io_stream_in_xls_format

if you need to pass on more parameters, you could use:

Book.get_xls(**keywords)
Book.set_xls(the_io_stream_in_xls_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.xlsm

pyexcel.Book.xlsm

	
Book.xlsm

	Get/Set data in/from xlsm format

You could obtain content in xlsm format by dot notation:

Book.xlsm

And you could as well set content by dot notation:

Book.xlsm = the_io_stream_in_xlsm_format

if you need to pass on more parameters, you could use:

Book.get_xlsm(**keywords)
Book.set_xlsm(the_io_stream_in_xlsm_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.xlsx

pyexcel.Book.xlsx

	
Book.xlsx

	Get/Set data in/from xlsx format

You could obtain content in xlsx format by dot notation:

Book.xlsx

And you could as well set content by dot notation:

Book.xlsx = the_io_stream_in_xlsx_format

if you need to pass on more parameters, you could use:

Book.get_xlsx(**keywords)
Book.set_xlsx(the_io_stream_in_xlsx_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.ods

pyexcel.Book.ods

	
Book.ods

	Get/Set data in/from ods format

You could obtain content in ods format by dot notation:

Book.ods

And you could as well set content by dot notation:

Book.ods = the_io_stream_in_ods_format

if you need to pass on more parameters, you could use:

Book.get_ods(**keywords)
Book.set_ods(the_io_stream_in_ods_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.stream

pyexcel.Book.stream

	
Book.stream

	Return a stream in which the book content is properly encoded

Example:

>>> import pyexcel as p
>>> b = p.get_book(bookdict={"A": [[1]]})
>>> csv_stream = b.stream.texttable
>>> print(csv_stream.getvalue())
A:
+---+
| 1 |
+---+

Where b.stream.xls.getvalue() is equivalent to b.xls. In some situation
b.stream.xls is prefered than b.xls.

It is similar to save_to_memory().

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.save_as

pyexcel.Book.save_as

	
Book.save_as(filename)

	Save the content to a new file

	Parameters:	filename – a file path

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.save_to_memory

pyexcel.Book.save_to_memory

	
Book.save_to_memory(file_type, stream=None, **keywords)

	Save the content to a memory stream

	Parameters:	
	file_type – what format the stream is in

	stream – a memory stream. Note in Python 3, for csv and tsv
format, please pass an instance of StringIO. For xls,
xlsx, and ods, an instance of BytesIO.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Book.save_to_database

pyexcel.Book.save_to_database

	
Book.save_to_database(session, tables, initializers=None, mapdicts=None, auto_commit=True)

	Save data in sheets to database tables

	Parameters:	
	session – database session

	tables – a list of database tables, that is accepted by
Sheet.save_to_database(). The sequence of tables
matters when there is dependencies in between the
tables. For example, Car is made by Car Maker.
Car Maker table should
be specified before Car table.

	initializers – a list of intialization functions for your
tables and the sequence should match tables,

	mapdicts – custom map dictionary for your data columns
and the sequence should match tables

	auto_commit – by default, data is committed.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet

pyexcel.Sheet

	
class pyexcel.Sheet(sheet=None, name='pyexcel sheet', name_columns_by_row=-1, name_rows_by_column=-1, colnames=None, rownames=None, transpose_before=False, transpose_after=False)

	Two dimensional data container for filtering, formatting and iteration

Sheet is a container for a two dimensional array, where
individual cell can be any Python types. Other than numbers, value of these
types: string, date, time and boolean can be mixed in the array. This
differs from Numpy’s matrix where each cell are of the same number type.

In order to prepare two dimensional data for your computation, formatting
functions help convert array cells to required types. Formatting can be
applied not only to the whole sheet but also to selected rows or columns.
Custom conversion function can be passed to these formatting functions. For
example, to remove extra spaces surrounding the content of a cell, a custom
function is required.

Filtering functions are used to reduce the information contained in the
array.

	Variables:	
	name – sheet name. use to change sheet name

	row – access data row by row

	column – access data column by column

Example:

>>> import pyexcel as p
>>> content = {'A': [[1]]}
>>> b = p.get_book(bookdict=content)
>>> b
A:
+---+
| 1 |
+---+
>>> b[0].name
'A'
>>> b[0].name = 'B'
>>> b
B:
+---+
| 1 |
+---+

	
__init__(sheet=None, name='pyexcel sheet', name_columns_by_row=-1, name_rows_by_column=-1, colnames=None, rownames=None, transpose_before=False, transpose_after=False)

	Constructor

	Parameters:	
	sheet – two dimensional array

	name – this becomes the sheet name.

	name_columns_by_row – use a row to name all columns

	name_rows_by_column – use a column to name all rows

	colnames – use an external list of strings to name the columns

	rownames – use an external list of strings to name the rows

Methods

	__init__([sheet,

 pyexcel.Sheet.content

pyexcel.Sheet.content

	
Sheet.content

	Plain representation without headers

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.number_of_rows

pyexcel.Sheet.number_of_rows

	
Sheet.number_of_rows()

	The number of rows

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.number_of_columns

pyexcel.Sheet.number_of_columns

	
Sheet.number_of_columns()

	The number of columns

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.row_range

pyexcel.Sheet.row_range

	
Sheet.row_range()

	Utility function to get row range

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.column_range

pyexcel.Sheet.column_range

	
Sheet.column_range()

	Utility function to get column range

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.rows

pyexcel.Sheet.rows

	
Sheet.rows()

	Returns a top to bottom row iterator

example:

import pyexcel as pe
data = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]
m = pe.Matrix(data)
print(pe.utils.to_array(m.rows()))

output:

[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

More details see RowIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.rrows

pyexcel.Sheet.rrows

	
Sheet.rrows()

	Returns a bottom to top row iterator

import pyexcel as pe
data = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]
m = pe.Matrix(data)
print(pe.utils.to_array(m.rrows()))

[[9, 10, 11, 12], [5, 6, 7, 8], [1, 2, 3, 4]]

More details see RowReverseIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.columns

pyexcel.Sheet.columns

	
Sheet.columns()

	Returns a left to right column iterator

import pyexcel as pe
data = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]
m = pe.Matrix(data)
print(list(m.columns()))

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

More details see ColumnIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.rcolumns

pyexcel.Sheet.rcolumns

	
Sheet.rcolumns()

	Returns a right to left column iterator

example:

import pyexcel as pe
data = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]
m = pe.Matrix(data)
print(pe.utils.to_array(m.rcolumns()))

output:

[[4, 8, 12], [3, 7, 11], [2, 6, 10], [1, 5, 9]]

More details see ColumnReverseIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.enumerate

pyexcel.Sheet.enumerate

	
Sheet.enumerate()

	Iterate cell by cell from top to bottom and from left to right

>>> import pyexcel as pe
>>> data = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]
...]
>>> m = pe.sheets.Matrix(data)
>>> print(list(m.enumerate()))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

More details see HTLBRIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.reverse

pyexcel.Sheet.reverse

	
Sheet.reverse()

	Opposite to enumerate

each cell one by one from
bottom row to top row and from right to left
example:

>>> import pyexcel as pe
>>> data = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]
...]
>>> m = pe.sheets.Matrix(data)
>>> print(list(m.reverse()))
[12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

More details see HBRTLIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.vertical

pyexcel.Sheet.vertical

	
Sheet.vertical()

	Default iterator to go through each cell one by one from
leftmost column to rightmost row and from top to bottom
example:

import pyexcel as pe
data = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]
m = pe.Matrix(data)
print(list(m.vertical()))

output:

[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]

More details see VTLBRIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.rvertical

pyexcel.Sheet.rvertical

	
Sheet.rvertical()

	Default iterator to go through each cell one by one from rightmost
column to leftmost row and from bottom to top
example:

import pyexcel as pe
data = [
 [1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]
m = pe.Matrix(data)
print(pe.utils.to_array(m.rvertical())

output:

[12, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 1]

More details see VBRTLIterator

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.cell_value

pyexcel.Sheet.cell_value

	
Sheet.cell_value(row, column, new_value=None)

	Random access to table cells

	Parameters:	
	row (int) – row index which starts from 0

	column (int) – column index which starts from 0

	new_value (any) – new value if this is to set the value

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.__getitem__

pyexcel.Sheet.__getitem__

	
Sheet.__getitem__(aset)

	

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.row_at

pyexcel.Sheet.row_at

	
Sheet.row_at(index)

	Gets the data at the specified row

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.set_row_at

pyexcel.Sheet.set_row_at

	
Sheet.set_row_at(row_index, data_array)

	Update a row data range

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.delete_rows

pyexcel.Sheet.delete_rows

	
Sheet.delete_rows(row_indices)

	Delete one or more rows

	Parameters:	row_indices (list) – a list of row indices

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.extend_rows

pyexcel.Sheet.extend_rows

	
Sheet.extend_rows(rows)

	Take ordereddict to extend named rows

	Parameters:	rows (ordereddist/list) – a list of rows.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.column_at

pyexcel.Sheet.column_at

	
Sheet.column_at(index)

	Gets the data at the specified column

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.set_column_at

pyexcel.Sheet.set_column_at

	
Sheet.set_column_at(column_index, data_array, starting=0)

	Updates a column data range

It works like this if the call is:
set_column_at(2, [‘N’,’N’, ‘N’], 1):

 +--> column_index = 2
 |
A B C
1 3 N <- starting = 1
2 4 N

This function will not set element outside the current table range

	Parameters:	
	column_index (int) – which column to be modified

	data_array (list) – one dimensional array

	staring (int) – from which index, the update happens

	Raises:	IndexError – if column_index exceeds column range
or starting exceeds row range

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.delete_columns

pyexcel.Sheet.delete_columns

	
Sheet.delete_columns(column_indices)

	Delete one or more columns

	Parameters:	column_indices (list) – a list of column indices

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.extend_columns

pyexcel.Sheet.extend_columns

	
Sheet.extend_columns(columns)

	Take ordereddict to extend named columns

	Parameters:	columns (ordereddist/list) – a list of columns

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.name_columns_by_row

pyexcel.Sheet.name_columns_by_row

	
Sheet.name_columns_by_row(row_index)

	Use the elements of a specified row to represent individual columns

The specified row will be deleted from the data
:param row_index: the index of the row that has the column names

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.rownames

pyexcel.Sheet.rownames

	
Sheet.rownames

	Return row names if any

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.named_column_at

pyexcel.Sheet.named_column_at

	
Sheet.named_column_at(name)

	Get a column by its name

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.set_named_column_at

pyexcel.Sheet.set_named_column_at

	
Sheet.set_named_column_at(name, column_array)

	Take the first row as column names

Given name to identify the column index, set the column to
the given array except the column name.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.delete_named_column_at

pyexcel.Sheet.delete_named_column_at

	
Sheet.delete_named_column_at(name)

	Works only after you named columns by a row

Given name to identify the column index, set the column to
the given array except the column name.
:param str name: a column name

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.name_rows_by_column

pyexcel.Sheet.name_rows_by_column

	
Sheet.name_rows_by_column(column_index)

	Use the elements of a specified column to represent individual rows

The specified column will be deleted from the data
:param column_index: the index of the column that has the row names

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.colnames

pyexcel.Sheet.colnames

	
Sheet.colnames

	Return column names if any

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.named_row_at

pyexcel.Sheet.named_row_at

	
Sheet.named_row_at(name)

	Get a row by its name

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.set_named_row_at

pyexcel.Sheet.set_named_row_at

	
Sheet.set_named_row_at(name, row_array)

	Take the first column as row names

Given name to identify the row index, set the row to
the given array except the row name.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.delete_named_row_at

pyexcel.Sheet.delete_named_row_at

	
Sheet.delete_named_row_at(name)

	Take the first column as row names

Given name to identify the row index, set the row to
the given array except the row name.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.array

pyexcel.Sheet.array

	
Sheet.array

	Get/Set data in/from array format

You could obtain content in array format by dot notation:

Sheet.array

And you could as well set content by dot notation:

Sheet.array = the_io_stream_in_array_format

if you need to pass on more parameters, you could use:

Sheet.get_array(**keywords)
Sheet.set_array(the_io_stream_in_array_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.records

pyexcel.Sheet.records

	
Sheet.records

	Get/Set data in/from records format

You could obtain content in records format by dot notation:

Sheet.records

And you could as well set content by dot notation:

Sheet.records = the_io_stream_in_records_format

if you need to pass on more parameters, you could use:

Sheet.get_records(**keywords)
Sheet.set_records(the_io_stream_in_records_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.dict

pyexcel.Sheet.dict

	
Sheet.dict

	Get/Set data in/from dict format

You could obtain content in dict format by dot notation:

Sheet.dict

And you could as well set content by dot notation:

Sheet.dict = the_io_stream_in_dict_format

if you need to pass on more parameters, you could use:

Sheet.get_dict(**keywords)
Sheet.set_dict(the_io_stream_in_dict_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.url

pyexcel.Sheet.url

	
Sheet.url

	Set data in url format

You could set content in url format by dot notation:

Sheet.url

if you need to pass on more parameters, you could use:

Sheet.set_url(the_io_stream_in_url_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.csv

pyexcel.Sheet.csv

	
Sheet.csv

	Get/Set data in/from csv format

You could obtain content in csv format by dot notation:

Sheet.csv

And you could as well set content by dot notation:

Sheet.csv = the_io_stream_in_csv_format

if you need to pass on more parameters, you could use:

Sheet.get_csv(**keywords)
Sheet.set_csv(the_io_stream_in_csv_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.tsv

pyexcel.Sheet.tsv

	
Sheet.tsv

	Get/Set data in/from tsv format

You could obtain content in tsv format by dot notation:

Sheet.tsv

And you could as well set content by dot notation:

Sheet.tsv = the_io_stream_in_tsv_format

if you need to pass on more parameters, you could use:

Sheet.get_tsv(**keywords)
Sheet.set_tsv(the_io_stream_in_tsv_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.csvz

pyexcel.Sheet.csvz

	
Sheet.csvz

	Get/Set data in/from csvz format

You could obtain content in csvz format by dot notation:

Sheet.csvz

And you could as well set content by dot notation:

Sheet.csvz = the_io_stream_in_csvz_format

if you need to pass on more parameters, you could use:

Sheet.get_csvz(**keywords)
Sheet.set_csvz(the_io_stream_in_csvz_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.tsvz

pyexcel.Sheet.tsvz

	
Sheet.tsvz

	Get/Set data in/from tsvz format

You could obtain content in tsvz format by dot notation:

Sheet.tsvz

And you could as well set content by dot notation:

Sheet.tsvz = the_io_stream_in_tsvz_format

if you need to pass on more parameters, you could use:

Sheet.get_tsvz(**keywords)
Sheet.set_tsvz(the_io_stream_in_tsvz_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.xls

pyexcel.Sheet.xls

	
Sheet.xls

	Get/Set data in/from xls format

You could obtain content in xls format by dot notation:

Sheet.xls

And you could as well set content by dot notation:

Sheet.xls = the_io_stream_in_xls_format

if you need to pass on more parameters, you could use:

Sheet.get_xls(**keywords)
Sheet.set_xls(the_io_stream_in_xls_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.xlsm

pyexcel.Sheet.xlsm

	
Sheet.xlsm

	Get/Set data in/from xlsm format

You could obtain content in xlsm format by dot notation:

Sheet.xlsm

And you could as well set content by dot notation:

Sheet.xlsm = the_io_stream_in_xlsm_format

if you need to pass on more parameters, you could use:

Sheet.get_xlsm(**keywords)
Sheet.set_xlsm(the_io_stream_in_xlsm_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.xlsx

pyexcel.Sheet.xlsx

	
Sheet.xlsx

	Get/Set data in/from xlsx format

You could obtain content in xlsx format by dot notation:

Sheet.xlsx

And you could as well set content by dot notation:

Sheet.xlsx = the_io_stream_in_xlsx_format

if you need to pass on more parameters, you could use:

Sheet.get_xlsx(**keywords)
Sheet.set_xlsx(the_io_stream_in_xlsx_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.ods

pyexcel.Sheet.ods

	
Sheet.ods

	Get/Set data in/from ods format

You could obtain content in ods format by dot notation:

Sheet.ods

And you could as well set content by dot notation:

Sheet.ods = the_io_stream_in_ods_format

if you need to pass on more parameters, you could use:

Sheet.get_ods(**keywords)
Sheet.set_ods(the_io_stream_in_ods_format, **keywords)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.stream

pyexcel.Sheet.stream

	
Sheet.stream

	Return a stream in which the sheet content is properly encoded

Example:

>>> import pyexcel as p
>>> s = p.Sheet([[1]], 'A')
>>> csv_stream = s.stream.texttable
>>> print(csv_stream.getvalue())
A:
+---+
| 1 |
+---+

Where s.stream.xls.getvalue() is equivalent to s.xls. In some situation
s.stream.xls is prefered than s.xls.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.format

pyexcel.Sheet.format

	
Sheet.format(formatter)

	Apply a formatting action for the whole sheet

Example:

>>> import pyexcel as pe
>>> # Given a dictinoary as the following
>>> data = {
... "1": [1, 2, 3, 4, 5, 6, 7, 8],
... "3": [1.25, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8],
... "5": [2, 3, 4, 5, 6, 7, 8, 9],
... "7": [1, '',]
... }
>>> sheet = pe.get_sheet(adict=data)
>>> sheet.row[1]
[1, 1.25, 2, 1]
>>> sheet.format(str)
>>> sheet.row[1]
['1', '1.25', '2', '1']
>>> sheet.format(int)
>>> sheet.row[1]
[1, 1, 2, 1]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.apply_formatter

pyexcel.Sheet.apply_formatter

	
Sheet.apply_formatter(aformatter)

	Apply the formatter immediately

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.filter

pyexcel.Sheet.filter

	
Sheet.filter(column_indices=None, row_indices=None)

	Apply the filter with immediate effect

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.transpose

pyexcel.Sheet.transpose

	
Sheet.transpose()

	Rotate the data table by 90 degrees

Reference transpose()

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.map

pyexcel.Sheet.map

	
Sheet.map(custom_function)

	Execute a function across all cells of the sheet

Example:

>>> import pyexcel as pe
>>> # Given a dictinoary as the following
>>> data = {
... "1": [1, 2, 3, 4, 5, 6, 7, 8],
... "3": [1.25, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8],
... "5": [2, 3, 4, 5, 6, 7, 8, 9],
... "7": [1, '',]
... }
>>> sheet = pe.get_sheet(adict=data)
>>> sheet.row[1]
[1, 1.25, 2, 1]
>>> inc = lambda value: (float(value) if value != '' else 0)+1
>>> sheet.map(inc)
>>> sheet.row[1]
[2.0, 2.25, 3.0, 2.0]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.region

pyexcel.Sheet.region

	
Sheet.region(topleft_corner, bottomright_corner)

	Get a rectangle shaped data out

	Parameters:	
	topleft_corner (slice) – the top left corner of the rectangle

	bottomright_corner (slice) – the bottom right
corner of the rectangle

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.cut

pyexcel.Sheet.cut

	
Sheet.cut(topleft_corner, bottomright_corner)

	Get a rectangle shaped data out and clear them in position

	Parameters:	
	topleft_corner (slice) – the top left corner of the rectangle

	bottomright_corner (slice) – the bottom right
corner of the rectangle

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.paste

pyexcel.Sheet.paste

	
Sheet.paste(topleft_corner, rows=None, columns=None)

	Paste a rectangle shaped data after a position

	Parameters:	topleft_corner (slice) – the top left corner of the rectangle

example:

>>> import pyexcel as pe
>>> data = [
... # 0 1 2 3 4 5 6
... [1, 2, 3, 4, 5, 6, 7], # 0
... [21, 22, 23, 24, 25, 26, 27],
... [31, 32, 33, 34, 35, 36, 37],
... [41, 42, 43, 44, 45, 46, 47],
... [51, 52, 53, 54, 55, 56, 57] # 4
...]
>>> s = pe.Sheet(data)
>>> # cut 1<= row < 4, 1<= column < 5
>>> data = s.cut([1, 1], [4, 5])
>>> s.paste([4,6], rows=data)
>>> s
pyexcel sheet:
+----+----+----+----+----+----+----+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 21 | | | | | 26 | 27 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 31 | | | | | 36 | 37 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 41 | | | | | 46 | 47 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 51 | 52 | 53 | 54 | 55 | 56 | 22 | 23 | 24 | 25 |
+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 32 | 33 | 34 | 35 |
+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 42 | 43 | 44 | 45 |
+----+----+----+----+----+----+----+----+----+----+
>>> s.paste([6,9], columns=data)
>>> s
pyexcel sheet:
+----+----+----+----+----+----+----+----+----+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 21 | | | | | 26 | 27 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 31 | | | | | 36 | 37 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 41 | | | | | 46 | 47 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 51 | 52 | 53 | 54 | 55 | 56 | 22 | 23 | 24 | 25 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 32 | 33 | 34 | 35 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 42 | 43 | 44 | 22 | 32 | 42 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | 23 | 33 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | 24 | 34 | 44 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | 25 | 35 | 45 |
+----+----+----+----+----+----+----+----+----+----+----+----+

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.save_as

pyexcel.Sheet.save_as

	
Sheet.save_as(filename, **keywords)

	Save the content to a named file

Keywords may vary depending on your file type, because the associated
file type employs different library.

for csv, fmtparams [https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters] are accepted

for xls, ‘auto_detect_int’, ‘encoding’ and ‘style_compression’ are
supported

for ods, ‘auto_detect_int’ is supported

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.save_to_memory

pyexcel.Sheet.save_to_memory

	
Sheet.save_to_memory(file_type, stream=None, **keywords)

	Save the content to memory

	Parameters:	
	file_type – any value of ‘csv’, ‘tsv’, ‘csvz’,
‘tsvz’, ‘xls’, ‘xlsm’, ‘xlsm’, ‘ods’

	stream – the memory stream to be written to. Note in
Python 3, for csv and tsv format, please
pass an instance of StringIO. For xls, xlsx,
and ods, an instance of BytesIO.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 pyexcel.Sheet.save_to_database

pyexcel.Sheet.save_to_database

	
Sheet.save_to_database(session, table, initializer=None, mapdict=None, auto_commit=True)

	Save data in sheet to database table

	Parameters:	
	session – database session

	table – a database table

	initializer – a initialization functions for your table

	mapdict – custom map dictionary for your data columns

	auto_commit – by default, data is auto committed.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Internal API reference

Internal API reference

This is intended for developers and hackers of pyexcel.

Data sheet representation

In inheritance order from parent to child

	Matrix(array)
	The internal representation of a sheet data.

